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Motivation

The Case for Uncertainty Quantification

UQ is needed in:

@ Assessment of confidence in computational predictions

@ Validation and comparison of scientific/engineering models
@ Design optimization

@ Use of computational predictions for decision-support

@ Assimilation of observational data and model construction
@ Multiscale and multiphysics model coupling
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Motivation
Sources of Uncertainty

® model structure

@ participating physical processes
@ governing equations
@ constitutive relations

@ model parameters

@ transport properties

@ thermodynamic properties
@ constitutive relations

@ rate coefficients

@ initial and boundary conditions
@ geometry
@ truncation errors
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UQ in Multiscale Atomistic-to-Continuum Models

Consider a system comprised of:
@ a molecular dynamics (MD) box coupled to
@ a continuum simulation

Consider uncertainty in both:
@ model parameters e.g.

— force field pair-potential parameters
— continuum constitutive law parameters

@ Coupling terms
— finite-time averaging of MD statistics
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Effect of Averaging time window in AtC Coupling

5 5 W

v (m/s)

-1 -1
50 20 40 60 80 50 20 40 60 80
wigt  tap(s) o 1ot tmp(ns)
6 6 6
=
4 4 4
~
2 2 2
—%0 -10 0 10 20 —%0 -10 0 10 20 —%0 -10 0 10 20
v (m/s) v (m/s) v (m/s)
‘—y:”l:\m-fi —y=90 —y=hup ‘

NET UQ in Multiscale AtC Models



Basics

Overview of UQ Methods

Estimation of model/parametric uncertainty
@ Expert opinion, data collection
@ Regression analysis, fitting, parameter estimation
@ Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models
@ Local sensitivity analysis (SA) and error propagation

@ Fuzzy logic; Evidence theory — interval math
@ Probabilistic framework — Global SA / stochastic UQ
@ Random sampling, statistical methods
@ Polynomial Chaos (PC) methods
— Collocation methods — sampling — non-intrusive
— Galerkin methods — direct — intrusive
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Basics
Bayes formula for Parameter Inference

Data Model (fit model + noise): y="Ff(A)+e€
Bayes Formula:

P(A,Y) = p(AlY)P(Y) = p(y|A)p(A)

Likelihood Prior
p(Y[A)  P(A)

p(AI_y) _
Posterior D (y)

Evidence
Prior: knowledge of \ prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data

Evidence: normalizing constant for present context
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Polynomial Chaos Methods for UQ

@ Model uncertain quantities as random variables (RVS)

@ Any RV with finite variance can be represented as a
Polynomial Chaos expansion (PCE)

u(x, t,w) Zukxt\lfk w))

— Uk(x,t) are mode strengths
— &(w) ={&, - ,&n} is avector of standard RVs
— Wy() are functions orthogonal w.r.t. the density of £

with dimension n and order p:

(n+p)!

P+1=
n!p!
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Orthogonality

By construction, the functions ¥() are orthogonal with respect
to the density of the basis/germ &

1
Ux,t) = — g [ Uk EAE) W@pe(e)ce
(wg) (9} ¢
Examples:
@ Hermite polynomials with Gaussian basis
@ Legendre polynomials with Uniform basis, ...
@ Global versus Local PC methods

— Adaptive domain decomposition of the stochastic
support of u
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Basics

Non-intrusive Spectral Projection (NISP) PC UQ

@ Sampling-based

@ Relies on black-box utilization of the computational model
@ Evaluate projection integrals numerically

@ For any model output of interest ¢(x, t; \):

1
K = [ ot x©) wOpe€)c, k=o0.....P
@ Integrals can be evaluated using

— A variety of (Quasi) Monte Carlo methods
— Quadrature/Sparse-Quadrature methods
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Basics

PCE Construction for Noisy Functions

@ Quadrature formulae presume a degree of smoothness
— No convergence for a noisy function

e = @ [un©) me©pe)de, k=o0.....P
@ Sparse-Quadrature formulae are ill-conditioned and
highly-sensitive to noise
— No convergence with order
— Error grows with increased dimensionality
@ Options in the presence of noise:

@ RMS fitting for PC coefficients
@ Bayesian inference of PC coefficients
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AtC

Multiscale System Geometry — Couette Flow

Continuum: d<z<h
Atomistic: 0<z<h

Overlap region: <z <h_

(b) ©
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AtC

AtC Coupling Strategy

Velocity-velocity coupling
@ Atomistic model output velocity u
inferred based on data: {V}1,
@ N=N; x N;
@ N; replica MD simulations
@ N; time-window averaged MD
velocities per sim.

@ Continuum model output velocity U

v(7,,)=(0,-U 0]

VI joion)=10,U .0

Atomistic

model

Overlap (hand-shake)
region

Pc i Continuum
BCC model
—

Uncertain
yobservables
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AtC

Uncertainty versus Numerical/Truncation Errors

@ In the presence of parametric uncertainty, judicious choice
of the
— MD averaging window
— length of runs, and
— number of replicas
can be made
@ Uncertainty due to MD-averaging noise can be
— controlled to be of same order as parametric
uncertainties

— accounted for in the same framework as that of
parametric uncertainty
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UQ Procedure

NISP Procedure
@ Parametric Uncertainty can be handled using quadrature
— an outer loop over quadrature points

@ For each vector of parameter values, at each quadrature
point, we define a UQ problem involving only noise

— an inner loop employing PC + Bayesian inference
Focus on inner loop
@ Only uncertainty due to MD-averaging noise

@ Fixed point iteration to converge on constant uncertain
u=>  wrcand U =), Uy, or chosen observable
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AtC

Noise-UQ Inner Loop Procedure

@ Introduce a single degree of freedom £ to represent
noise-induced uncertainty

@ Given U = ), U(&), generate samples {Ui}i'\';1
@ For each U sample, evaluate atomistic model output
velocity data {VI}1,
@ Use Bayesian inference to estimate u = ), ucWi(§)
@ Propagate PCE of u through Continuum model
— Arrive at new iterate of PCE of U
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AtC

MD Data Noise for a Range of U

3

| | | | |
T T T T T

@ Data for Bayesian inference
D={Vi} i=1...,Ns j=1,...,N

@ Direct use of MD computations in repeated iterations is
prohibitive

@ Construct a PC surrogate for atomistic model output
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AtC

MD Data Surrogate

t, =5 ns t,, =25 ns

25 25 25

20 20 20

15 15 15

10 10 10

5

[

40 0 40 0 10 %}) 30 40
Surrogate: V=Vy+wU+on, n L N(0,1) (CLT)

@ Bayesian inference for p(vo, v, o|D)
@ D = data from MD simulations
@ Posterior predictive replicates noisy MD data for any U
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AtC

Uncertainty Propagation in MD Model

U u(d
Sampling on Gauss Folding { and &
quadrature points into n

N ij IN,—X N, -
Bayesian inference

@ Input velocity: U(¢) = Sp_o UkWk(€)

@ Output velocity: = p_o tPk(£)

@ Data from Surrogate Posterior Predictive: ~{\/”}iN:qu'\‘:l

@ Bayesian inference = posterior: p(Uo, Uy, . . ., Up|D)

@ With improper uniform priors on U, and Jeffreys prior on o :
U, U1, ...,0p]" ~S(7,A, %)

Multivariate Student-t distribution
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AtC

Uncertainty Propagation in MD Model

With G = [T, Uy, ..., 0p]7, ¥ = [Wg, ¥y,..., Up|T

P
= > WUk =0T
k=0

)73 w(]?)

Student-t process
or, with ¢ ~ §(~,0,1),

() =TEOT- A+ ([TET-=- ()Y

Using the inverse CDF transform, construct the 1D PCE

U—Zuk‘I’k &) L a0
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Coupled System

@ Atomistic model u(¢) = fa[U(§)]
@ Analytical Couette flow model U (&) = fc[u(€)]
@ Fixed point iteration: fori =1,2,...

u(E) = fUHe)
u'©) = flu(©)

iterate till convergence
@ Options: with/without Sequential Bayesian Update (SBU)

— Without: Same prior in each iteration
— With: Prior; = Posteriorj_1
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AtC

Given U' — Effect of Avg. Window & # MD samples
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AtC

Uncertain Input U(¢) — Effect of Avg. Window
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Closure
Closure

@ Outlined a parametric+noise UQ strategy in coupled
atomistic-continuum multiscale models

@ Quadrature for parametric uncertainty
@ Bayesian Inference for handling noise uncertainty

— then quadrature
@ PC Surrogate for MD box

@ Results highlight trade-off between averaging window and
prevailing uncertainty

@ Faster convergence with SBU

@ Stopping criterion when

@ change in one iteration is less than specified tolerance
@ observable uncertainty is comparable to that in the
surrogate model parameters

@ Other alternatives beside fixed point iteration
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