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The Case for Uncertainty Quantification

UQ is needed in:

Assessment of confidence in computational predictions

Validation and comparison of scientific/engineering models

Design optimization

Use of computational predictions for decision-support

Assimilation of observational data and model construction

Multiscale and multiphysics model coupling
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Sources of Uncertainty

model structure
participating physical processes
governing equations
constitutive relations

model parameters
transport properties
thermodynamic properties
constitutive relations
rate coefficients

initial and boundary conditions

geometry

truncation errors

SNL Najm UQ in Multiscale AtC Models 5 / 27



Motivation Basics AtC Closure

UQ in Multiscale Atomistic-to-Continuum Models

Consider a system comprised of:

a molecular dynamics (MD) box coupled to

a continuum simulation

Consider uncertainty in both:

model parameters e.g.
– force field pair-potential parameters
– continuum constitutive law parameters

Coupling terms
– finite-time averaging of MD statistics
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Effect of Averaging time window in AtC Coupling
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Overview of UQ Methods

Estimation of model/parametric uncertainty

Expert opinion, data collection

Regression analysis, fitting, parameter estimation

Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models

Local sensitivity analysis (SA) and error propagation

Fuzzy logic; Evidence theory — interval math
Probabilistic framework — Global SA / stochastic UQ

Random sampling, statistical methods
Polynomial Chaos (PC) methods

– Collocation methods — sampling — non-intrusive
– Galerkin methods — direct — intrusive
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Bayes formula for Parameter Inference

Data Model (fit model + noise): y = f (λ) + ǫ

Bayes Formula:

p(λ, y) = p(λ|y)p(y) = p(y|λ)p(λ)

p(λ|y)
Posterior

=

Likelihood

p(y|λ)
Prior

p(λ)

p(y)
Evidence

Prior: knowledge of λ prior to data

Likelihood: forward model and measurement noise

Posterior: combines information from prior and data

Evidence: normalizing constant for present context
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Polynomial Chaos Methods for UQ

Model uncertain quantities as random variables (RVs)

Any RV with finite variance can be represented as a
Polynomial Chaos expansion (PCE)

u(x, t, ω) ≃
P
∑

k=0

uk(x, t)Ψk(ξ(ω))

– uk(x, t) are mode strengths
– ξ(ω) = {ξ1, · · · , ξn} is a vector of standard RVs
– Ψk() are functions orthogonal w.r.t. the density of ξ

with dimension n and order p:

P+ 1 =
(n+ p)!

n!p!
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Orthogonality

By construction, the functions Ψk() are orthogonal with respect
to the density of the basis/germ ξ

uk(x, t) =
〈uΨk〉

〈Ψ2
k〉

=
1

〈Ψ2
k〉

∫

u(x, t;λ(ξ))Ψk(ξ)pξ(ξ)dξ

Examples:

Hermite polynomials with Gaussian basis

Legendre polynomials with Uniform basis, ...

Global versus Local PC methods
– Adaptive domain decomposition of the stochastic

support of u
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Non-intrusive Spectral Projection (NISP) PC UQ

Sampling-based

Relies on black-box utilization of the computational model

Evaluate projection integrals numerically

For any model output of interest φ(x, t;λ):

φk(x, t) =
1

〈

Ψ2
k

〉

∫

φ(x, t;λ(ξ))Ψk(ξ)pξ(ξ)dξ, k = 0, . . . ,P

Integrals can be evaluated using
– A variety of (Quasi) Monte Carlo methods
– Quadrature/Sparse-Quadrature methods
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PCE Construction for Noisy Functions

Quadrature formulae presume a degree of smoothness
– No convergence for a noisy function

uk =
1

〈

Ψ2
k

〉

∫

u(λ(ξ))Ψk(ξ)pξ(ξ)dξ, k = 0, . . . ,P

Sparse-Quadrature formulae are ill-conditioned and
highly-sensitive to noise

– No convergence with order
– Error grows with increased dimensionality

Options in the presence of noise:
RMS fitting for PC coefficients
Bayesian inference of PC coefficients
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Multiscale System Geometry – Couette Flow
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AtC Coupling Strategy

Velocity-velocity coupling
Atomistic model output velocity u
inferred based on data: {vj}N

j=1
N = Nr × Nt

Nr replica MD simulations
Nt time-window averaged MD
velocities per sim.

Continuum model output velocity U
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Uncertainty versus Numerical/Truncation Errors

In the presence of parametric uncertainty, judicious choice
of the

– MD averaging window
– length of runs, and
– number of replicas

can be made

Uncertainty due to MD-averaging noise can be
– controlled to be of same order as parametric

uncertainties
– accounted for in the same framework as that of

parametric uncertainty
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UQ Procedure

NISP Procedure

Parametric Uncertainty can be handled using quadrature
– an outer loop over quadrature points

For each vector of parameter values, at each quadrature
point, we define a UQ problem involving only noise

– an inner loop employing PC + Bayesian inference

Focus on inner loop

Only uncertainty due to MD-averaging noise

Fixed point iteration to converge on constant uncertain
u =

∑

k ukΨk and U =
∑

k UkΨk, or chosen observable
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Noise-UQ Inner Loop Procedure

Introduce a single degree of freedom ξ to represent
noise-induced uncertainty

Given U =
∑

k UkΨk(ξ), generate samples {Ui}Ns
i=1

For each Ui sample, evaluate atomistic model output
velocity data {vij}N

j=1

Use Bayesian inference to estimate u =
∑

k ukΨk(ξ)

Propagate PCE of u through Continuum model
– Arrive at new iterate of PCE of U
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MD Data Noise for a Range of U

Data for Bayesian inference
D = {vij} i = 1, . . . ,Ns j = 1, . . . ,N

Direct use of MD computations in repeated iterations is
prohibitive

Construct a PC surrogate for atomistic model output
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MD Data Surrogate
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Surrogate: v = v0 + v1U + ση, η
i.i.d.
∼ N(0, 1) (CLT)

Bayesian inference for p(v0, v1, σ|D)

D = data from MD simulations

Posterior predictive replicates noisy MD data for any U
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Uncertainty Propagation in MD Model

Input velocity: U(ξ) =
∑P

k=0 UkΨk(ξ)

Output velocity: ũ =
∑P

k=0 ũkΨk(ξ)

Data from Surrogate Posterior Predictive: {vij}
Nq

i=1
N
j=1

Bayesian inference ⇒ posterior: p(ũ0, ũ1, . . . , ũP|D)

With improper uniform priors on ũk and Jeffreys prior on σ :

[ũ0, ũ1, . . . , ũP]
T ∼ S(γ,λ,Σ)

Multivariate Student-t distribution
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Uncertainty Propagation in MD Model

With ũ ≡ [ũ0, ũ1, . . . , ũP]
T, Ψ ≡ [Ψ0,Ψ1, . . . ,ΨP]

T

ũ(ξ) =
P
∑

k=0

ũkΨk(ξ) = ũT
Ψ(ξ)

∼ S
(

γ,Ψ(ξ)T · λ, [Ψ(ξ)T ·Σ ·Ψ(ξ)]1/2
)

Student-t process
or, with ζ ∼ S(γ, 0, 1),

ũ(ξ, ζ) = Ψ(ξ)T · λ+ ζ [Ψ(ξ)T ·Σ ·Ψ(ξ)]1/2

Using the inverse CDF transform, construct the 1D PCE

u =

P
∑

k=0

ukΨk(ξ)
dist
= ũ(ξ, ζ)
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Coupled System

Atomistic model u(ξ) = fa[U(ξ)]

Analytical Couette flow model U(ξ) = fc[u(ξ)]

Fixed point iteration: for i = 1, 2, . . .

ui(ξ) = f i
a[U

i−1(ξ)]

Ui(ξ) = fc[u
i(ξ)]

iterate till convergence

Options: with/without Sequential Bayesian Update (SBU)
– Without: Same prior in each iteration
– With: Priori ≡ Posteriori−1
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Given Ui – Effect of Avg. Window & # MD samples
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Uncertain Input U(ξ) – Effect of Avg. Window
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Coupled System – With or Without SBU

0 5 10 15
−1

−0.5

0

0.5

1

ũ0
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Closure

Outlined a parametric+noise UQ strategy in coupled
atomistic-continuum multiscale models

Quadrature for parametric uncertainty
Bayesian Inference for handling noise uncertainty

– then quadrature
PC Surrogate for MD box

Results highlight trade-off between averaging window and
prevailing uncertainty

Faster convergence with SBU
Stopping criterion when

change in one iteration is less than specified tolerance
observable uncertainty is comparable to that in the
surrogate model parameters

Other alternatives beside fixed point iteration
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