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‘Some of the Materials-Related Scientific
Challenges in Li-ion Batteries
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*in situ TEM
e atomic-scale modeling

Focus Topics in this Talk
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Our in situ TEM approach: isolate the
nanostructure plus in situ TEM electrochem.

|. sample assembly Il. on-chip assembly lll. assemble in a

inside TEM - use ionic liquid sealed chip

- use ionic liquid electrolytes inside TEM - use standard

electrolytes - standard electrolytes electrolytes inside TEM
outside TEM

Conducting Epoxy SnO, Nanowires

LiCoO,

Potentiostat
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‘ Experiments in Nanoscale Li-ion
Electrochemistry: A Three-pronged Effort

Structural and mechanical
characterization by in situ TEM

e

 strain accommodation during lithiation a-Li,O + Sn-Li
« initiation of defects (e.g. dislocations/

cracks) , ‘ -
» kinetics of lithiation

Single nanoparticle and batch

electrochemical studies Subramanian, et

al., in submission to
« correlating electrochemical properties NanoLett (2011).
to structure

» size-dependent behavior

Electrode/electrolyte interface studies

Sullivan, et al.,
Proc. SPIE (2010).

« SEI formation (composition and
morphology) )

» SEl evolution, aging, and stability
during cycling
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How do you do liquid
electrochemistry in a TEM? -- ILs
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action of ionic liguids on Si In
the TEM.
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Electrochemistry inside the TEM:
Lithiation of a SnO, NW anode.

Potentiostat

Jian Yu Huang, et al., “In situ observation of the electrochemical lithiation @ Sandia

National
of a single SnO, nanowire electrode,” Science 330, 1515 (2010). laboratore
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&/A/Lithiation creates amorphous Li,O + Sn-Li
and a lengthening of the NW.

J.Y. Huang, et al., 2010. Laboratories
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The reaction is diffusion-limited:
limited by Li* flux through Li,0.
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e diffusion-limited
kinetics (t1/2)

 diffusivities of 0.05 to
5 x 1014 m?/sec

IL, Low Li diffusion flux

High Li diffusion flux
Sn + Li,Sn + Amorphous Li,O
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J.Y. Huang, et al., 2010.



Imaging the strain accommodation
mechanism.

et al. 2010. o o A= Lahoratories



A snapshot in time showing the rxn

front and the phases.
Single Crystal SnO, Dislocation Cloud | Amorphous
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SnoO, B
Nanowires

l LiCoO,

the measurement geometry?

Silver Epoxy
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1 -Reaction interface

Sn + Li,Sn + a-Li,0
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Same morphology is observed for a
“flooded” geometry.
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J.Y. Huang, et al.,unpublished.

Laboratories



Below ILE surface

Looking in more detail
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J.Y. Huang, et al.,unpublished.
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More details ...
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o all nanowire anodes behave the same?
The story with Si.

Os CENTSR

4206 s \

J.Y. Huang, et al.,Nano Lett. (in submission)
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Lithiation of Si leads to a core-shell
structure.

Li lon Flux

 Core-shell structure; Conical shape of the core
» Reaction from surface to the interior
* No elongation, no dislocations

Jries




anging the reaction kinetics by changing
electrical conductivity: C-coated Si.
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Imilar kinetics are observed between C-
oated and heavily phosporus-doped Si
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%mparison of lithiation rate and electrical
conductivity.
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- What about C-coating the
SnO, nanowires?

Carbon coating
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J.Y. Huang, et al., accepted in ACS Nano
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V
&' How do we make in situ TEM of

battery materials an easy to use tool?

making an in situ TEM sample

~ 20 pm @ ﬁaa%gil?al.
Laboratories
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} How do we easily assemble and measure

“lots” of different battery materials?

Dielectrophoresis
(DEP) assembly

ir
—
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A chip-based platform for in situ TEM.

common
DEP contact

£y >
FW | det | mag |mode] tilt —1pym HV HFW WD | det | mag | mode| tilt
5.00kV |5.12ym|{ 5.2 mm |TLD|25000x| SE |52 5.00kV[1.28 mm|52mm |ETD[100x| SE |52

A. Subramanian, et al.,” Single nanowire structural, electrical, and electrochemical
characterization during lithium insertion,” (in submission to Nano Lett), 2011.
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Hybrid Nanofabrication Platform for in situ TEM

silicon nitride
membrane

| 800nm * 6um hole

EM window
(through hole in nitride)

| e WD | det | mag |[mode| filt | 4 um
“2[5.00 kV|12.8 pym|5.2mm | TLD|[10000x| SE |52°

T VAL =37
N A A4 .
A. Subramanian, et al., 2011.
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Battery Materials Co-Assembly

Co-assembled, DEP-based integration of NW / NP Anodes & Cathodes

. Seutial co-assembly of anodic and ctho nanomaterials onto the same chip using DEP
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3 What are the structural and electrical
FMnO, _
changes that occur after the first cycle?

Test Case: B-MnO, NWs

P42/mnm
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Ex-situ lithiation is performed, followed
by characterization.
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P ‘ First cycle lithiation disorders the lattice and

increases the resistivity — kinetic limitations.

thiati thiati electrical changes
bere I|th|a|on \& after I|th3t|on (ratio of lithiated to
unlithiated resistance)
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 capacity fade is due to kinetic limitations Sandia

 can also see this by rate-dependent charging studies @ pr L, |
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What about the interaction of the electrode
material with real battery electrolytes?

Kevin Leung and J.
Budzien, Phys. Chem.
Chem. Phys. (2010).
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% Our approach: develop in-situ

electrochemical platforms for TEM.

Sullivan, et al.,
“Understanding Li-ion
battery processes at the
atomic- to nano-scale,” SPIE
Proc. 7683, 76830B1 (2010).

alignment

electrodes
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There has been limited in-situ liquid-cell
TEM work.

Sapphire 2 mm Y ouo‘
Reservoir y E’.:- £ - ' § I j »

i - ™~ —-; , 3 Pt . |
synthesis

i Cu electro-
plating

Imaging window

20 pum — electrode

Ross, IBM J. Res. Develop. 44,
489 (2000).

Zheng et al., Science 324, 1309 (2009).

Williamson et al., Nature Mater. 2, 532 (2003).

also ...
Electron beam ]
Thiberge et al., Proc. Natl. Acad.
Flow @ Sci. 101, 3346 (2004).

Liu et al., Lab Chip 8, 1915
(2008).

7' Sandia
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de Jonae et al.. Proc. Natl. Acad. Sci. 106. 2159 (2609).
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Assembly requires alignment, sealing,
filling, and capping.

Align top and bottom chips
Epoxy seal (Epotek 301 — used industrially for Si chips)

Fill with electrolyte
. Cap fill holes

‘(\
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A
& More than three electrodes are provided:
enables field-driven assembly.

36

T I T T

assemble battery material
on to electrodes

v ey v ffgr i K x_stageRT="0Q _ @
///IVA " Ay _
J. P. Sullivan, et al., 2010.
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Preliminary testing in the TEM ...
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optical transmission
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SEl morphology and evolution should be
visible, as suggested by Si-ILE studies

,'},,7
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In situ TEM of a carbon-coated Si hanowire during lithiation/delithiation

(Jian Yu Huang, et al.)
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Until we can get there experimentally,
what can theory tell us?

Kevin Leung and J.
¢ Budzien, Phys. Chem.
) Chem. Phys. (2010).

(bare graphite electrode immersed in EC)
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;’“\Iew SEl reaction pathway discovered

by AIMD.

EC+2e —> -OC,H,0 +CO

—

-OC,H,0" + 2 CO,® ‘0,COC,H,0CO,

\ not recognized as a mechanism before, but found @ Sandia

to dominate on reactive surfaces (e.g. Li°) ebormeories



also favors CO production pathway.

EC liquid breakdown on Li metal electrode

11/12 EC at
the interface
decomposes

+ CO, not

into OC,H,0?

C,H, + CO2

Yy
0\" VS. | =

T=350 K

i3,

s ol el il il o ool e i

Expt: Aurbach, Daroux, Foguy,

Liu, Balblll_epmpn

Egung:RES 201ntact EC

SEIl “film” Li metal

Yeager, JES 134:1
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Single molecule EC breakdown on Li
metal electrode surface again favors CO.

Li metal Intact EC

. @ ﬁgtnigil?al
K. Leung, to be submitted Laboratories



But CO;% reaction product is more
exothermic -> kinetic limitation.

favored due
to kinetics
R
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formation?

What about later stages of SEI

44

pristine electrode

Li metal Intact EC Li metal

~adiabatic (e- moves faster than nuclei)

*DFT calculations suffice

ab initio molecular dynamics to follow
i * follow bond-breaking in real time

“aged” electrode

Intact EC  LIAIO,  Li,Cq4
7 or 10 A thick

*non-adiabatic (e- tunnels slowly)
*Focus on electron transfer

(Marcus theory)

«Constrained DFT (cDFT) i

lories



Why LiAIO,?

Ultrathin Direct Atomic Layer Deposition on ) S
Composite Electrodes for Highly Durable and ‘

,5 ALD directly on electrode 50 °C
¥

®
™5 ALD (NO/TMA)

directly on electrode

By Yoon Seok Jung, Andrew S. Cavanagh, Leah A. Riley, Sun-Ho Kang,
Anne C. Dillon, Markus D. Groner, Steven M. George, and Se-Hee Lee*
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Oxide-coated electrode: focus on e
transfer to EC (non-adiabatic effects)

can’t use DFT

v o Sandia
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V
P 4 ' Use Marcus theory to calculate electron
transfer rate: focus on A and V,g

: : 0
reaction coordinate

adiabatic

DFT rigorous if no self-interaction error

ket = vnexp[—(A/4 — Vap)/keT|

non-adiabatic

DFT not rigorous; cDFT gives A and V,g

- 27| Vagl? Lo |

i NP v i
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EC on 10A LiAIO, coating —
no decomposition (in 7ps)

LiC,  LiAIO, Intact EC LIAIO,  LIC,

(LIAIO, instead of Al,O; as model: has Li embedded on surface, more ordered surface )

. @ ﬁgtnigil?al
K. Leung, to be submitted Laboratories
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up spin
down spin
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transfer.
bent EC-

IS critical for e-

flat EC

'I‘he conformation of the EC molecule
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A ~ 2 eV (dominates)
V,g ~0.017 eV

Kot ~ 3X103 /s

—~
2
%(||||

(about 1/3 msec)

K. Leung, to be submitted
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On 10 A thick oxide coating: product
channel crossover

,'},'

C-O bond breaking barriers

150 | | S
: /‘\/\ : on thicker coating, CO
1 JEAN . much less favorable
o /N .-F 0 than CO.2 2 product
505 //' E channel crossover
T Ay |
OPe=<ZT—- S E
\\\xm“‘“x CO,*
055 | | | | =

o 1 2 3 4 5
reaction coordinate
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I K. Leung, to be submitted @ Sandia



What about later stages of SEI
formation?

52

pristine electrode

Li metal Intact EC Li metal

*two possible reaction pathways
*CO pathway is preferred due to

kinetic effects
T VAL =% “
LA LN

“aged” electrode

Intact EC  LIAIO,  Li,Cq4
7 or 10 A thick

kinetics about 9 orders of magnitude
slower
-for thicker oxide, CO4? pathway is

preferred s

[ories
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OK, where do we go from here?

e can we move towards predicting battery (not just cell or
even half-cell) degradation?

- what do we mean by degradation?
« what about loss in capacity of a vehicle battery pack?

one bad cell?

T IR R ETIITINE
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}- Thermal-induced degradation is

iImportant.

* include variable temperature capabillity in in situ TEM

* correlate observed structure (i.e. SEI layer thickness) with
electrochemical observables, such as EIS or entropy
measurements

* include chemical spectroscopies that can probe chemical
species in the electrolyte and electrode interface (SERS,
second harmonic generation)

e other ...

T AL =) Sandia
A VAN National
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