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Abstract — A first principles calculation for the
transfer capacitance of a Beldon cable is carried out
by the use of filamentary constant, dipole, quadru-
pole, and octopole unknown charges placed at the
center of each braid wire. Results are compared
with full electrostatic simulations and phenomeno-
logical models.

1 INTRODUCTION

A review of the literature for development of
phenomenological models for penetration of cable
shields has a long history and has been documented
in [1]. These models have had considerable success
in predicting the penetration through cable shields;
however, we occasionally run into modifications of
cable topology that call into question the use of
these models. It would thus be useful to assemble a
first principles model of the shield, not only to han-
dle changes in topology from the standard geome-
try, but also to form a theoretical underpinning for
the existing models. The comercially avaliable Bel-
don cable of Figure 1 was chosen as a generic test
problem. As a simpification the braid is replaced by
an infinitely periodic planar (quasi-planar?) braid
whose unit cell is given in Figure 1. The relation-
ship between the transfer capacitance (Cr) of the
coaxial cable and planar shield is given by
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where ¢./Fy is the solution to the planar problem,
a is the inner conductor radius, b is the outer shield
radius, and bgyq is the effective radius to a ground
outside of the braid. A similar connection holds
between the transfer inductance and the magnetic
flux of the magnetostatic planar braid problem.
The present work is an extension of [1] where a
planar approximation to the cylindrical (coaxial?)
braid was modeled with our electrostatic version of
EIGER™M . A unit cell for the two-dimensional in-
finitely periodic problem is shown in Figure 2. The
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Figure 1: A commercially available Beldon cable.
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Figure 2: The unit cell of the two-dimensional infi-
nitely periodic braid.

diameter of a single strand is 0.005", the magnitude
of both lattice vectors p, and p, is 0.24404747,
a = 24.4000°, and T is along the cable axis. The
unit cell area A is 0.0448132 in?. In [1] each of
the 56 wires of the unit cell was meshed for sim-
ulation with Sandia’s static version of EIGERTM
with 30 segments along the length and 16 segments
around the circumference, giving an total triangu-
lar unknown count of 53,760. Because of the large
number of unknowns and the need to simplify the
treatment of the magnetostatic diffusion problem,
the use of a modal series for the ¢ varation of the
currents on each wire was proposed in [1].

The present work is similar in spirit to the modal



series solution but is simpler in its implementa-
tion. Piecewise constant filament charge densities,
as well as their dipole, quadripole, and octipole
counterparts, that extend over each wire segment
are placed along the center of each (p = 0) seg-
ment.

2 Formulation of the Electro- Static Inte-
gral Equation

We formulate the integral equation for the unknown
sources in a single unit cell. Ths sources have the

form
Nseg
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where
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We work in the coordinate system of the
nthsegment which runs from r,_; to 7, in the
global coordinate system and points in the local
z, direction. The other unit vectors in the lo-
cal wire segment coordinate system are denoted
by Z,, and 7,. They are chosen to make a
right handed Z,,¥,, z, triplet. The index pair
(i,4) denotes the multipole index. For the charge
filament (4, 5) = (0,0), for a dipole charge unknown
(i,7) = (1,0) denotes a charge displacement in the
Z,, direction where (0, 1) denotes a charge displace-
ment in the 7, direction. For quadripole charge
distributions (4,7) = (2,0) denotes a quadripole
charge in the Z,direction and (1,1) denotes a
quardipole formed by dipole displacement in both
the Z,, and 7, directions due to the near linear
dependency of the (2,0) and (0,2) quadrapole
source terms we do not use the (0,2) quadripole
source term. For octipoles we use the (3,0) and
(2,1) source terms. This gives N**¢9 = 3 5 or
7 independent unknowns for each wire segment for
dipoles, quadrupoles, and octopoles, respectively.
The potential due to each source term is given by

1,if s’ in the n**segment
0, otherwise

¢'! (r) = ¢™°(r) + ¢*°(x) (1)
where the scattered potential is
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Because the tangential component of the elec-
tric field vanishes on the surfacees of the individual

wires, the total potential must be a constant. This
fact is used to solve for the line multipole moments
of the wires. The match points on the surface m*"
wire segment are described by

(3)

where r¢, is the centroid of the m'" segment, —m <
¢; < mis a local coordinate angle at the wire and
a is the wire radius. Since we have N%%¢9 un-
knowns on each wire segment, we require N% %9
match points per segment to generate the required
equations. We place the match points on the sur-
face of the wire at

T(m,j) = Ty, +a(cos p; + sinp,;yy,)

Pnj = 2mj /N>, (4)

where ¢, is the polar angle in the coordi-
nate system of the n'* wire segment and j =
N I N
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In [1] it was shown that the problem of an Ei"¢ =
—1 V incident field above the braid and zero inci-
dent field below the braid may solved by the super-
position of two problems. The first has a z directed
uniform incident field of 0.5 V/m with zero total po-
tential on the braid surface, the total charge ¢V%
on that problem is computed. The second problem
is that of zero incident field and a unit potential
on the braid ¢'V is computed. The total problem
is then solved by setting the braid voltage to be
Bpraia = —(Ago(1V/m) + ¢VF)/q'V and incident
uniform field excitation £ = —0.5 V/m to yield
a net field E, = —1 far below the braid and £, =0
V/m far above the braid.

2.1 Uniform field and zero braid potential
problem

We now focus attention on the problem of the pla-
nar braid excited by a uniform field

97 () = 6" (r) + 6°(r)

where the scattered potential ¢°(r) is is given by
1 and the incident potential is

6(r) = —2/2

We set the ¢'!(r) to zero on the braid surface 1
to obtain

% T(m,j)
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a square linear system for the Nseg x N"%¢Y un-
knowns. Once this symsem is solved for all the
charge sources

()

m=1,..., Neeg



1 is used to obtain the scattered potential
YT (ro) at the observation point ry above the

braid. The charge oUF is obtained by summing GE spectral Z Z COS ktmn ,0 Sspectral
m,n

the product of the charges Uno,o) and each segment 4A e — 60 e — 00

length A,,.

2.2 Zero uniform field and unit potental on
the braid problem gspectral _ ( =kemnlz| opf, tmn _LLE
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Now a 1 volt potential applied to the braid with

zero incident field to yield Etmn
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which is again a square linear system for the
Nseg x N*5¢9 unknowns. Again 1 is used to
obtain ¢'V(rg). The total charge for this ex-
citation ¢'” is again obtained by summing o
051070)An for this excitation. Kimn = sz X Z+nZ X s

Sspectral |z\erf(|z\ E) e—(|z|E)
N

2.3 Planar transfer Capacitance
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The ﬁn.al ¢ (r) is s'caled by 0.0254 m/mc.h since VG(r) = —V (11)
the units of the braid geometry are provided in A R ono
inches. _ _ _
_|_VGE,spatzal(r) + VGE,spectral(r>
3 Evaluation of the Green’s functions by
Ewald methods
If |z — 21| < < max (p,, pp) as occurs for evaluation VGEsvectral (y 4A Z Z ([ktmn.2Z + Ktmn y U]

of the system matrix elements the evaluation of M=—00 N=—00
the two-dimensionally infinitely periodic Green’s
function is carried out by a static modifica-
tion to the Ewald methods discussed in [2].
These techniques are used to obtain the doubly-
infinite, periodic Green’s function for the three-
dimensional "planar" braid G(r,r’) and its gradi- Gopectral _ _ {e—ktmnz erfc(w 2| E)
ents VG(r,r’), VVG(r,r'),and VVVG(r,r’) that ’ 2F

are needed for the dipole, quadrupole, and octo-
pole sources, respectively. Due to space limitations
only a brief summary of the results are presented
here.
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results for VVVG(r), VVVG(r) have also been
obtained but are not given due to space limitations.
If |z—=z/| >> max (p,,p,) as occurs for
evaluation of the potential far above the braid a
static spectral series approach is used to evaluate

G(r-r),VG(r—r),VVG(r—r), and VVG(r—r).
4 Results

We choose the point 7 = (0,0, zp) above the braid
and use 7 and 8 to obtain the transfer capacitance
for the case sources up to dipoles, quadrapoles and
octipoles.

qUF ¢SC,UF qu ¢1V ¢tot
dipoles
quadripoles -2.543880*107 '8  3.752849280*10~3% 6.4023434*107'2 -0.95632523 1.19%10°7
octipoles 3.48704559*1073  3.64155666%103 6.4258314*107 12 -0.96533436 2.65*10~6

( Note the dipole simulations are still running ,
if it agres with the quardapole I may lave out the
octipole results)

The full EIGER simulation [1] with ‘12, and 16
elements around the circumference gave ¢ /Eo =
9.11*10~8m and 8.67* 10~®m respectively.We con-
tiune to work on the octipole case .

Similar results for the magneto-static transer in-
ductance proble will be adressed in the talk but are
omitted here due to space considerations.



