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Abstract – A first principles calculation for the

transfer capacitance of a Beldon cable is carried out

by the use of filamentary constant, dipole, quadru-

pole, and octopole unknown charges placed at the

center of each braid wire. Results are compared

with full electrostatic simulations and phenomeno-

logical models.

1 INTRODUCTION

A review of the literature for development of

phenomenological models for penetration of cable

shields has a long history and has been documented

in [1]. These models have had considerable success

in predicting the penetration through cable shields;

however, we occasionally run into modifications of

cable topology that call into question the use of

these models. It would thus be useful to assemble a

first principles model of the shield, not only to han-

dle changes in topology from the standard geome-

try, but also to form a theoretical underpinning for

the existing models. The comercially avaliable Bel-

don cable of Figure 1 was chosen as a generic test

problem. As a simpification the braid is replaced by

an infinitely periodic planar (quasi-planar?) braid

whose unit cell is given in Figure 1. The relation-

ship between the transfer capacitance ( ) of the

coaxial cable and planar shield is given by

 = −0


20

ln() ln [(+ 0)]

where 0 is the solution to the planar problem,

 is the inner conductor radius,  is the outer shield

radius, and  is the effective radius to a ground

outside of the braid. A similar connection holds

between the transfer inductance and the magnetic

flux of the magnetostatic planar braid problem.

The present work is an extension of [1] where a

planar approximation to the cylindrical (coaxial?)

braid was modeled with our electrostatic version of

EIGER . A unit cell for the two-dimensional in-

finitely periodic problem is shown in Figure 2 . The
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Figure 1: A commercially available Beldon cable.
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Figure 2: The unit cell of the two-dimensional infi-

nitely periodic braid.

diameter of a single strand is 0.005", the magnitude

of both lattice vectors ρ and ρ is 02440474 ”

 = 244000◦, and b is along the cable axis. The

unit cell area  is 0044 813 2 2 In [1] each of

the 56 wires of the unit cell was meshed for sim-

ulation with Sandia’s static version of EIGER

with 30 segments along the length and 16 segments

around the circumference, giving an total triangu-

lar unknown count of 53,760. Because of the large

number of unknowns and the need to simplify the

treatment of the magnetostatic diffusion problem,

the use of a modal series for the  varation of the

currents on each wire was proposed in [1].

The present work is similar in spirit to the modal
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series solution but is simpler in its implementa-

tion. Piecewise constant filament charge densities,

as well as their dipole, quadripole, and octipole

counterparts, that extend over each wire segment

are placed along the center of each ( = 0) seg-

ment.

2 Formulation of the Electro- Static Inte-

gral Equation

We formulate the integral equation for the unknown

sources in a single unit cell. Ths sources have the

form

() (s0) =
X
=1

() (s
0)

where

() =

½
1  0 in the 

0 

We work in the coordinate system of the

 which runs from −1 to  in the

global coordinate system and points in the localb direction. The other unit vectors in the lo-

cal wire segment coordinate system are denoted

by b, and b. They are chosen to make a

right handed b b b triplet. The index pair

( ) denotes the multipole index. For the charge

filament ( ) = (0 0) for a dipole charge unknown

( ) = (1 0) denotes a charge displacement in theb direction where (0 1) denotes a charge displace-
ment in the b direction. For quadripole charge

distributions ( ) = (2 0) denotes a quadripole

charge in the bdirection and (1 1) denotes a

quardipole formed by dipole displacement in both

the b and b directions due to the near linear
dependency of the (2 0) and (0 2) quadrapole

source terms we do not use the (0 2) quadripole

source term. For octipoles we use the (3 0) and

(2 1) source terms. This gives  = 3, 5, or

7 independent unknowns for each wire segment for

dipoles, quadrupoles, and octopoles, respectively.

The potential due to each source term is given by

(r) = (r) + (r) (1)

where the scattered potential is

(r) =
1

4

X
=1

X


() · (2)

Z µ
− 



¶ µ
− 



¶
(r− r0(0))(s0)0

Because the tangential component of the elec-

tric field vanishes on the surfacees of the individual

wires, the total potential must be a constant. This

fact is used to solve for the line multipole moments

of the wires. The match points on the surface 

wire segment are described by

r() = r

 + (cos + sinb) (3)

where r is the centroid of the 
 segment, − 

 ≤  is a local coordinate angle at the wire and

 is the wire radius. Since we have  un-

knowns on each wire segment, we require 

match points per segment to generate the required

equations. We place the match points on the sur-

face of the wire at

 = 2
  (4)

where  is the polar angle in the coordi-

nate system of the  wire segment and  =

−−1
2

 · · ·  −1
2

.

In [1] it was shown that the problem of an 
 =

−1 V incident field above the braid and zero inci-
dent field below the braid may solved by the super-

position of two problems. The first has a b directed
uniform incident field of 0.5 V/m with zero total po-

tential on the braid surface, the total charge 

on that problem is computed. The second problem

is that of zero incident field and a unit potential

on the braid 1 is computed. The total problem

is then solved by setting the braid voltage to be

 = −(0(1) +  )1 and incident

uniform field excitation 
 = −05 V/m to yield

a net field  = −1 far below the braid and  = 0

V/m far above the braid.

2.1 Uniform field and zero braid potential

problem

We now focus attention on the problem of the pla-

nar braid excited by a uniform field

(r) = (r) + (r)

where the scattered potential (r) is is given by

1 and the incident potential is

(r) = −2

We set the (r) to zero on the braid surface 1

to obtain


¡
()

¢
=
b · ()

2
 = 1   (5)

a square linear system for the × un-

knowns. Once this symsem is solved for all the

charge sources



1 is used to obtain the scattered potential

 (r0) at the observation point r0 above the

braid. The charge  is obtained by summing

the product of the charges 
(00)
 and each segment

length ∆

2.2 Zero uniform field and unit potental on

the braid problem

Now a 1  potential applied to the braid with

zero incident field to yield

 (    ) = 1   = 1   (6)

which is again a square linear system for the

 ×  unknowns. Again 1 is used to

obtain 1 (0) The total charge for this ex-

citation 1 is again obtained by summing


(00)
 ∆ for this excitation

2.3 Planar transfer Capacitance

The total problem has

 = −(0  ∗ 1 +  )1 (7)

() = ( ()− 

2
+(1 −10) ) (8)

The final () is scaled by 00254 m/inch since

the units of the braid geometry are provided in

inches.

3 Evaluation of the Green’s functions by

Ewald methods

If | − 0|   max ( ) as occurs for evaluation

of the system matrix elements the evaluation of

the two-dimensionally infinitely periodic Green’s

function is carried out by a static modifica-

tion to the Ewald methods discussed in [2].

These techniques are used to obtain the doubly-

infinite, periodic Green’s function for the three-

dimensional "planar" braid (r r0) and its gradi-
ents ∇(r r0)∇∇(r r0)and ∇∇∇(r r0) that
are needed for the dipole, quadrupole, and octo-

pole sources, respectively. Due to space limitations

only a brief summary of the results are presented

here.

(r) =
1

4

1

00

+ e(r) + e(r)

(9)

− e(0 0 0)− e(0 0 0)

e(r) =
1

4

∞X
=−∞

∞X
=−∞

cos(k·)

 =

µ
−|| erfc(



2
− ||)

+|| erfc(


2
+ ||)

¶




00 = −2

"
|| erf(||) + −(||)

2


√


#

k =
2


s2 × b + b × s1

e(r) =
1

4

∞X
=−∞

∞X
=−∞

 (10)

; =
erfc()





00 =

− erf(0
0 )

00

∇(r) = 1

4
∇ 1

00

(11)

+∇ e(r) +∇ e(r)

∇ e(r) =
1

4

∞X
=−∞

∞X
=−∞

([b+ b]
sin(k · ) + ()b cos(k · )

¢

 = −
∙
−|| erfc(



2
− ||)

+|| erfc(


2
+ ||)

¸


 
 = −−|| erf (



2
− ||)

+|| erf (


2
+ ||)



+
2



√

−||−[


2
−||]2

− 2



√

||−[


2

+||]2



00 = −erf(||)

2

∇ e(r) =
1

4

∞X
=−∞

∞X
=−∞

 ∇

 =

"
−erfc()

2

− 2
−[]

2

√


#



00 =

"
erf(0

0 )

200

− 2
−[0

0 ]
2

√
 00

#

where

 =

q
[− (ρ + ρ) · b]2 + [ − (ρ + ρ) · b]2 + 2

∇ =
[− (ρ + ρ) · b] b+ [ − (ρ + ρ) · b] b + b



results for ∇∇∇(r)∇∇∇(r) have also been
obtained but are not given due to space limitations.

If | − 0|  max ( ) as occurs for

evaluation of the potential far above the braid a

static spectral series approach is used to evaluate

(r−r)∇(r−r)∇∇(r−r) and ∇∇(r−r)

4 Results

We choose the point 0 = (0 0 0) above the braid

and use 7 and 8 to obtain the transfer capacitance

for the case sources up to dipoles, quadrapoles and

octipoles.

  1 1 

dipoles

quadripoles -2.543880*10−18 3.752849280*10−3 6.4023434*10−12 -0.95632523 1.19∗10−7
octipoles 3.48704559*10−3 3.64155666*10−3 6.4258314*10−12 -0.96533436 2.65*10−6

( Note the dipole simulations are still running ,

if it agres with the quardapole I may lave out the

octipole results)

The full EIGER simulation [1] with ‘12, and 16

elements around the circumference gave 0 =

9.11*10−8  8.67* 10−8 We con-

tiune to work on the octipole case .

Similar results for the magneto-static transer in-

ductance proble will be adressed in the talk but are

omitted here due to space considerations.
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