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Scaling of Waves in 
Homogeneous Materials 
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Simulations for Layered Materials 
1-D CTH Calculations 
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Dimensional Analysis for  
Layered Materials 

variables of problem: 
 σ, ε, h, vf, C, (ρs,ρh) or (zs,zh) 

construct non-dimensional groups: 
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Non-Dimensional Simulation Results 

•  data for different material 
combinations collapse 
well using density ratio 
(with one exception) 

•  non-dimensionalization 
collapses data for 
different layer 
thicknesses 
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Non-Dimensionalized 
Experimental Results 

•  non-dimensional experimental results also collapse to a 
single curve (approximately to second power) 
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2-D CTH Simulations of 
Granular Materials 

•  non-planar shock structure 
•  CTH simulations reproduce first power 

scaling 
•  some dependence on Y, strong 

material dependence 
•  non-dimensionalization suggested by 

Grady (2010): 
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Non-Dimensionalization  
of CTH Results 

• scale wave speeds by square root of volume fraction 
(suggested by Steinberg, some validation by Bless) 

• Y needed to collapse data, though metals and 
ceramics separated somewhat 
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Results from a Particle-Based Code 
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• waves appear steady 
• wave speed increases with V  
• width of band decreases with V 
• elastic simulations yield same scaling 
- Grady’s scaling doesn’t work 

10:00 AM–10:15 AM Friday, Renaissance Ballroom AB 
Chris Lammi - Mesoscale Simulations of Granular Materials with Peridynamics 

EMU - Parallel, particle-based implementation of 
peridynamics (Silling, S. A. (2000). J. Mech. Phys. 
Solids 48, 175-209 
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Non-Dimensionalization  
for EMU Results 

• no strength in problem is material elastic 
• fracture does not seem to affect scaling 
• elastic-plastic material (baseline) has lower 
characteristic wave speed  will shift data upward 
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Non-Dimensionalization of 
Experimental Results 

• use hardness (H) as characteristic strength 
• does volume fraction enter in separately? 
• ceramics collapsed better without H, teflon collapsed 
better with H  additional data needed to distinguish 
two possibilities 
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A Simple Scaling Argument 
for Granular Materials (1) 

mass 
traversing 
pores controls 
width of 
shock front  
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A Simple Scaling Argument 
for Granular Materials (2) 
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mass transfer across void is critical aspect, thus 
granular WC and WC/epoxy behave very differently 



Conclusions 

•  power law dependence of strain rate with stress occurs in 
materials with microstructure: 

2nd - layered materials - wave reverberation due to density 
differences 

1st -  granular materials - mass transport 

•  non-dimensionalization collapse both experimental and 
simulated data for layered materials 

•  a simple argument based on mass transport yields first 
power scaling for granular materials 

•  non-dimensionalization for granular materials can be done 
(at least) two ways 

•  how to apply to mixtures of granular materials? 




