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Why lasers in solid state lighting?
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A. Neumann et al., "Four-color laser white illuminant demonstrating high color-
rendering quality,” Opt. Express, vol. 19, pp. A982-A990, 2011.
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Outline

e Introduction

e Nanowire fabrication and characterization
e Typical lasing from GaN nanowires

e Controlled Single-mode Lasing

e Polarization control

e Summary
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Nanowire lasers

v Diameter: 100~800nm

v" Length: 2um~100um

v" GaN, ZnO, GaP, CdSe......
v" Typically Febry-Perot cavity
v End-facet emission

" v Integrated nanophotonics

v Solid state lighting

v’ Atom trapping

v' High-resolution microdisplay
v’ Nano lithography

v’ Bio-sensing

 Reduced strain

— Greater range of alloy
compositions

GaN

« Easily integrated into two-
dimensional arrays
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Why Single-mode GaN Nanowire Lasers?

Integrated High- Nano Ultra-high density
nanocommunicatio resolution lithography data storage
n microdisplay

Multiple transverse modes

P. J. Pauzauskie, et al. Mat. Today 9(10), 36 (2006)
W. A. Challener, et al. Nat. Photonics 3(220), (2009)
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Why Single-mode GaN Nanowire Lasers?

Integrated High- Nano Ultra-high density
nanocommunicatio resolution lithography data storage
microdisplay
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P. J. Pauzauskie, et al. Mat. Today 9(10), 36 (2006) W. A. Challener, et al. Nat. Photonics 3(220), (2009)
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Why Polarization Control?

anisotropic testing
of biocells

v Interferometers,
v" Modulators,
v Sensors,
v" Nanolithography, incident biocells detector
v' Anisotropic properties of

biocell testing
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Advanced Nanowire Fabrication Technique

Two-step top-down etch = dry etch + wet etch

GaN epilayer ICP etch wet etch (AZ-400K developer)
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Q. Li, et al. Opt. Express 20, 17873 (2012)
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Nanowire Optical Characterization

Laser

Spatial Filteréf

Attenuator- CCD Spectrometer

27

Beam Splitters

Objective

Substraie

v' Pump: pulsed quadrupled Nd:YAG
laser

v’ 266nm, 400ps, 10kHz, 5.2mW

v' Spot size: 1~5 uym

v Room temperature operation

Q. Li, et al. Opt. Express 20, 17873 (2012)
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Nanowire Optical Characterization

CCD: or spectrometer

Pump laser

Polarizer L
1

20X |
Objective
e

Type 1 nanowire

|

Type Il nanowire _ &=

CCD
50X Beam splitter 1

Objective

v' Pump: pulsed quadrupled Nd:YAG laser

v’ 266nm, 400ps, 10kHz, 5.2mW, ~5um pump Spot
size

v’ Separation of the pumping and collecting arms

v Analysis of light emission directly from the end-
facet
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Typical GaN Nanowire Lasing: Multimode Operation

SEM image of a typical nanowire Interference pattern (CCD image)

Multi-wavelength lasing\~
N / Fine structures within the peak

J LAL/ Ranldom moclie spacing
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Why Multimode Lasing Occurs

GAIN

e /12
2nL
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= Gain spectrum
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,‘/ \{ loss level
% N
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v

v" Gain bandwidth ~7 nm;

v Longitudinal mode spacing ~1 nm;

v Several modes located in the gain
spectrum;

v Multiple longitudinal mode oscillation
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Why Multimode Lasing Occurs (2)

Transverse modes supported by a 300 nm diameter GaN nanowire.

v Multiple transverse mode waveguide;

v’ Single-mode cutoff diameter ~120 nm;

v' Lasing in multiple transverse mode
operation
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Method 1: Mode coupling effect
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Vernier Effect From a Coupled Cavity

ICNS 2013

15

v" Individual nanowire: individual cavity;

v A nanowire pair: coupled cavity;

v Four subcavities: 12, 14, 23, 34;

v' Resonance condition: 4 subcavities
resonant simultaneously
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Vernier Effect From a Coupled Cavity

LLELLL
A

Longitudinal
modes of
Nanowire A

Longitudinal

| ~ modes of

Longitug

{inal mode

2N

S spacing

LI
A

. /12/2ng

L

Nanowire B

l

Longitudinal
modes of
, Nanowire

ICNS 2013 -

Jjbwrigh@sandia.gov

A+B

Sandia
II" National _
Laboratories




Transverse mode selection

Mode location calculated by :

T(i) = (1 =R)*/[(1 =R)” + 4Rsin*(2nLn,/ /)]

Wavelength (nm)
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Single-mode Lasing From a Nanowire-pair

Intensity (counts/sec)
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v' Each individual nanowire shows multimode lasing;
v" The nanowire-pair shows single-mode operation;
v" 18 dB side mode suppression ratio (SMSR);
v" 0.12 nm lasing bandwidth;
v' Wavelength shifting;
v" First demonstration of Vernier effect on transverse mode
selection

H. Xu, et al. Appl. Phys. Lett. 101, 113106 (2012)
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Method 2 : mode-dependent attenuation

A nanowire on a gold substrate
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Substrate Induced Mode-dependent Loss

Mode 2 Mode 3

8151 4806 7109 16041

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
34858 7551 22205 29175 28706

Proiaiation loss of different transverse modes.
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Gold substrate preparation

HV tilt | HFW
500kV|0°4.34 mm Quanta FEG

Schematic of the substrate design SEM image of prepared
Au on SiN substrate
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Lasing Behavior Transition from Multimode to Single-mode
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v" Wavelength: 369nm; bandwidth: 0.12nm; SMSR: 17.4 dB;
v Threshold increased by 13%;
v' Offering guidance to metal contacted nanowire lasing (electrically-
injected)
H. Xu, et al. Appl. Phys. Lett. 101, 221114 (2012)
Sandia
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Summary

e Typical GaN nanowire lasers operate in
multi-mode state
— Single-mode is highly desirable in many

applications
* Nanowire-pair and nanowire-gold .' ML
geometries are proposed for high 260 ' 0 ' 280

Wavelength (nm)

performance: >14dB SMSR, bandwidth
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Polarization Control by Metal Substrate

Does the loss generated by the metal
substrate help to select a polarization?
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Lasing Properties of a Free Standing GaN Nanowire
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SEM image of a nanowire CCD image
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Why elliptically polarized?

Two orthogonal polarized fundamental modes supported by a
200 nm diameter nanowire

v Both fundamental transverse modes

v" Similar mode distribution

v' Same lasing wavelength

v" Two modes add together forming a elliptical
polarization
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Why Polarization Control Happens?

X polarized | y polarized

Fundamental modes supported by the nanowire-gold geometry

v’ Differently polarized modes experience
different cavity losses

v’ Loss for x-polarized mode: 0.36 dB/mm

v’ Loss for x-polarized mode: 2.11 dB/mm
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Lasing Properties of a Nanowire on Gold Substrate

260 280

Intensity V. S. the
rotation of the polarizer
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v' Single-wavelength lasing

v' Linear polarization

v’ Large extinction ratio
(21:1)

v" 0° polarization angle
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Lasing Property Statistics of Free Standing and On-gold Nanowires
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Statistics on the polarization axis Statistics on cross-polarization
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B Hanging nanowires
® Nanowires on gold
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Number of GaN nanowires

v Free standing nanowires are polarized with
random axes and a small CPSR
v" On-gold nanowires have fixed polarization angle

and large CPSR

0
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A free-standing GaN nanowire laser
is typically elliptically polarized with
random orientation

The elliptical polarization originates
from the mode degeneracy of the
nanowire

A on-gold nanowire generates
a larger cavity loss for the
perpendicularly polarized
mode

Linear polarization is achieved
with a fixed polarization
parallel to the substrate

Summary
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