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WELDING AND MECHANICAL PROPERTIES OF CAST FAPY
-1 Al-BASED) ALLOY SLABS*

V. K. Sikka, G. M. Goodwin, D. J. Alexander, and C. R. Howell

ABSTRACT

This report deals with the welding procedure development and
weldment properties of an Fe-16 at. % Al alloy known as FAPY. The
welding procedure development was carried out on 12-, 25-, and 51-mm (0.5-,
1-, and 2-in.) -thick plates of the alloy in the as-cast condition. The welds
were prepared by using the gas tungsten arc process and filler wire of
composition matching the base-metal composition. The preheat temperatures
varied from room temperature to 350°C, and the postweld heat treatment
(PWHT) was limited only for 1 h at 750°C. The welds were characterized by
microstructural analysis and microhardness data. The weldment specimens
were machined for Charpy-impact, tensile, and creep properties. The tensile
and creep properties of the weldment specimens were essentially the same as
that of the base metal. The Charpy-impact properties of the weldment
specimens improved with the PWHT and were somewhat lower than
previously developed data on the wrought material. Additional work is
required on welding of thicker sections, development of PWHT temperatures
as a function of section thickness, and mechanical properties.

1. INTRODUCTION

FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National
Laboratory as the highest aluminum-containing alloy with essentially no environmental
effect.! The chemical composition for FAPY in weight percent is: aluminum = 8.46,
chromium = 5.50, zirconium = 0.20, carbon = 0.30, molybdenum = 2.00, yttrium = 0.10,
and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and
rolling processes. The hot-worked cast structure can be cold worked with intermediate
anneals at 800°C. Typical room-temperature ductility of the fine-grained wrought structure
is 20 to 25% for this alloy. In contrast to the wrought structure, the ductility of the cast

*Research sponsored by the U.S. Department of Energy, Office of Fossil Energy,
Advanced Research and Technology Development Materials Program, [DOE/FE AA 15 10
10 0, Work Breakdown Structure Element ORNL-2(H)], under contract DE-ACO05-
840R21400 with Martin Marietta Energy Systems, Inc.



structure at room temperature is approximately 1% with a transition temperature of
approximately 100 to 150°C, above which ductility values exceed 20%. The alloy has been
melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-
blocks of varying thicknessess, and shapes. The purpose of this report is to describe the
welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep,
and Charpy-impact data of the welded plates are also presented.

2. CASTING

For the welding studies, the FAPY alloy was used in the as-cast condition, prepared
by vacuum-induction melting, and cast in graphite molds measuring 100 by 150 mm (4 by
6 in.) in length and having thicknesses of 12, 25, and 51 mm (0.5, 1, and 2 in.). All three
plates had good as-cast surfaces.

3. WELD PRODUCTION

Weld joints were prepared by sawing as shown in Fig. 1. The included angle of 60°
in the double-vee groove geometry was used for all three slab thicknesses and is typical of
industrial practice for plate welding. .

Weld wire of 3.2 mm (0.125 in.) diam with a matching composition of FAPY alloy
was used for all weldments using the manual gas tungsten arc (GTA) process. The joint
surfaces and filler wire were cleaned by wire brushing and solvent degreasing with acetone.
A summary of the welding parameters is shown in Table 1.

Preheat, when used, was accomplished with an oxyacetylene torch. Interpass
temperature was maintained at 350°C minimum. Postweld heat treatment (PWHT), when
used, was done immediately following welding in an air furnace followed by free cooling
in still air.

Completed weldments were examined for possible defects using liquid-dye
penetrant. A summary of the inspection results is shown in Table 2. End sections were
removed from each weldment for optical metallography. The macroetched surfaces of the

welded slabs are shown in Fig. 2.
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Table 1. Welding parameters for cast FAPY alloy slabs

Process: Manual gas tungsten arc

Joint geometry: Double-vee groove, 60° included angle

Base metal: Cast slabs [100 x 150 x 12, 25, and 51 mm (4 x 6 X 0.5, 1, and
2 in.) thicknesses]

Filler metal: 3.2-mm (0.125 in.) -diam rod, matching composition

Weld current: 100 to 175 A direct current electrode negative

Weld voltage: 10to 12V

Torch gas: Argon, 15 cfh (7.1 L/min)

Backing gas: Argon, 15 cfh (7.1 L/min)

Approximate number of passes (alternating sides): 12-mm (0.5-in.) slab: 6
25-mm (1-in.) slab: 25
51-mm (2-in.) slab: 65




Table 2. Inspection results of cast FAPY alloy slab welds

Temperature, °C Slab thickness, mm (in.)

Preheat Postheat 12 (0.5) 25(1) 51(2)
350 750 No cracks No cracks No cracks
200 750 -- -- No cracks

20 20 No cracks Cracks -

YP20719C

Fig. 2. Macroetched surfaces of gas tungsten arc-processed welds in cast slabs of
FAPY alloy.



4. MECHANICAL PROPERTIES

The welded slabs were cut up for mechanical property determinations. The 12-mm
(0.5-in.) -thick plates were used for Charpy-impact testing. The 25- and 51-mm (1- and
2-in.) -thick plates were used for tensile and creep properties. The specimen cut-up
diagrams for the Charpy, tensile, and creep specimens are shown in Fig. 3.

ORNL-DWG 95-5975

50-mm Charpy "V"
Notched Specimen

IR |

46.75-mm Specimen
with 25-mm Gage Length

62.5-mm Specimen
with 25-mm Gage Length

) POV O3 193 U 1V9) 091 PO R U PO YO 1Y 81-25'mm SpeCimen
e

r:':':‘l, " i A it , - 5.
A ’ ) ::\%Y:vﬁv:ﬁv:v:* l with 37.5-mm Gage Length

50 mm

Fig. 3. Schematic showing the location and size of mechanical property specimens
machined from welded slabs of FAPY alloy.



4.1 TENSILE PROPERTIES

The tensile data from room temperature to 800°C for the 25- and 51-mm (1- and
2-in.) -thick welded plates are summarized in Table 3. The strength and ductility data of
the weldments are plotted and compared with the base-metal data of the cast slabs in

Figs. 4 through 7. The following observations can be seen from these figures:

1. The 0.2% yield strength of the weldment specimens is essentially the same as the base-
metal values for the entire temperature range. This is true for specimens taken from
both the 25- and 51-mm (1- and 2-in.) -thick welded plates.

2. The ultimate tensile strength of the weldment specimens from the 51-mm
(2-in.) -thick plate showed lower values than the base metal in the test-temperature
range up to 200°C. This is the same temperature region where ductility of both base
metal and weldments is low (see Figs. 6 and 7). The observed results in Fig. 5 imply
that the weldment specimens from the 51-mm (2-in.) -thick plates are slightly more
brittle in this temperature range than base metal or 25-mm (1-in.) -thick plate.

3. The general trend of total elongation and reduction of area of weldments is the same as
that for the base metal (see Figs. 6 and 7).

Broken tensile specimens in Fig. 8 show that all failures between room temperature
to 800°C were in the weld region.

4.2 CREEP PROPERTIES

The creep data on three weldment specimens machined from 25-mm (1-in.) -thick
welded plate are summarized in Table 4. The creep-rupture data on the weldment
specimens are compared with the previously developed data on as-cast and wrought base-
metal specimens in Fig. 9 which shows that although limited in number, the short-term data
on weldment specimens match the data on base-metal, as-cast, and wrought specimens. It
should be recognized that long-term data are required to further confirm these observations.

4.3 CHARPY-IMPACT TESTS

Full-size Charpy-impact specimens were machined from two welded plates of
12-mm (0.5-in.) thickness. One of the plates contained a weld in the as-welded condition,
and the other one was given a PWHT at 750°C for 1 h. The schematic in Fig. 3 shows the
orientation of the Charpy specimens. The crack growth was parallel to the welding
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Fig. 4. Comparison of 0.2% yield strength of weldment
specimens with base metal of FAPY alloy. The base-metal data

are from a previous study on cast slab.
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Fig. 5. Comparison of ultimate tensile strength of weldment
specimens with base metal of FAPY alloy. The base-metal data are
from a previous study on cast slab.
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Fig. 6. Comparison of total elongation of weldment specimens
with base metal of FAPY alloy. The base-metal data are from a previous
study on cast slab.
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Fig. 7. Comparison of reduction of area of weldment specimens
with base metal of FAPY alloy. The base-metal data are from a previous

study on cast slab.
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Fig. 9. Comparison of creep-rupture properties of weldment
specimens with the as-cast and wrought base-metal specimens.

direction (T-L orientation). The specimens were tested on a 325-J capacity impact tester,
and the data are summarized in Table 5. The data, plotted in Fig. 10, were fitted with a
hyperbolic tangent function. The lower-shelf energy was fixed at 2 J and the upper-shelf
energy was fixed at the value of the test at 400°C for each set of specimens (122 J for the
as-welded specimens, 144 J for the postweld heat-treated specimens).

The results show that the PWHT does improve the toughness of the material. The
ductile-to-brittle transition temperature, defined at an energy level midway between the
upper- and lower-shelf energy levels, decreases from 245°C for the as-welded material to
200°C for the material that was given the PWHT, a 45°C improvement. The transition
temperature is still quite high however. The upper-shelf energy also improves with heat
treatment, increasing from 122 to 144 J. The specimens tested at 400°C showed completely
ductile fracture, and they provide a good estimate of the upper-shelf energy, although only
one specimen was tested for each material at high enough temperatures to give fully ductile
fracture.
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Table 5. Charpy-impact energy data on weldment specimens from
12-mm (0.5-in.) -thick plate of FAPY alloy

Charpy-impact energy
Test
temperature As welded Postweld heat treated?®
O
J ft/ib J filb
25 2 1.5 2.6 19
100 5.4 4.0 53 3.9
150 9.5 7.0 0.2 6.8
175 -- - 20.3 15.0
200 20.3 15.0 72.5 535
250 71.2 52.5 - -
300 100.3 74.0 126.1 93.0
400 122.0 90.0 143.7 106.0
apostweld heat treatment at 750°C for 1 h.
ORNL-DWG 95-5981
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Fig. 10. Plot of Charpy-impact energy of weldment specimens from 12-mm
(0.5-in.) -thick cast plate of FAPY alloy. Postweld heat treatment was carried out

at 750°C for 1 h.
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The Charpy-impact energy data for the weldment specimens are compared with
those of the wrought base-metal data in Fig. 11. This figure shows that the transition
temperature is approximately 50° higher for the weldment specimens, and the upper-shelf
energy is lower by approximately 100 J. The most likely cause for the higher transition
.temperature for the weldment specimens is their much coarser grain size as opposed to the
wrought material.

ORNL-DWG 95-5982
350 T I T I T ] T T T
300 —
250
— WROUGHT PLATE
2 200 |-
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=z 150 - — —
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=]
100 — ~
50 -~
0 11 I | 1 | | I
0 50 100 150 200 250 300 350 400 450 500

TEMPERATURE (°C)

Fig. 11. Comparison of Charpy-impact energy data of weldment
specimens with those of base-metal specimens in the wrought condition.

S. MICROSTRUCTURE AND HARDNESS DATA

In addition to the macroetched cross sections, photomicrographs of various regions
of the weldment were also taken (see Fig. 2). The sets of micrographs for the base metal,
heat-affected zone (HAZ), and weld metal for 12-, 25-, and 51-mm (0.5-, 1-, and 2-in.)
-thick plates are presented in Figs. 12 through 17. The photomicrographs of the darker
banded regions (see Figs. 14 and 15) in the macroetched sections of the 25- and 51-mm

(1- and 2-in.) -thick plates showed them to contain equiaxed grain structure. The general
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observations from the weldment photomicrographs are: (1) the weld metal has a coarse-
grained structure similar to the cast base metal, and (2) the region identified as HAZ shows
an epitaxial grain growth of the base-metal grains into the weld metal.

The microhardness data of the base-metal, HAZ, and weld-metal regions show that
they are essentially the same for plates of a given thickness (see Table 6). However, there
is approximately a 10- to 20-dph point increase in hardness of thicker plates as opposed to a
12-mm (0.5-in.) -thick plate. This is probably due to the greater number of passes, thus
more thermomechanical cycles, which the thicker plate experiences. Although different in
appearance, the banded region of the 25-mm (1-in.) -thick plate has hardness very similar
to the base- and weld-metal regions.

Table 6. Microhardness of base, weld, and heat-affected zone of welds in 12-, 25-, and
51-mm (0.5-, 1-, and 2-in.) -thick welded plates in the as-cast condition

Microhardness (dph)
Plate
thickness
(mm) Base Weld Heat-affected Base metal and heat-affected
metal metal zone zone in unusual area
12 223+4 2275 223+7 -
25 238 +4 2376 243+3 2466
51 233+£10 2527 238+4 240+ 11

6. DISCUSSION

The vacuum-induction-melted and as-cast plates of 12, 25, and 51 mm (0.5, 1, 2 in.)
thicknesses were successfully welded using the GTA process. All of the welds used a filler
wire of base-metal composition. The 12-mm (0.5-in.) -thick plate could be welded without
preheat. However, 25 mm (1 in.) and thicker sections require preheat to make crack-free

welds. The preheat temperature for the FAPY alloy can be as low as 200°C, which is no
different than that required for many ferritic steels. In addition to preheat, a PWHT of

750°C is highly desirable for lowering the transition temperature and increasing the upper-
shelf energy during Charpy-impact testing.
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The microstructure of the starting plates was coarse due to being in the as-cast
condition. For the thinner plate of 12 mm (0.5 in.) thickness, the grain structure was
primarily columnar. However, for the plates of 25 and 51 mm (1 and 2 in.) thicknesses,
some equiaxed structure was also present in addition to the columnar structure. The weld
region also showed a coarse-grained microstructure similar to the cast structure of the base
metal. Epitaxial growth of base-metal grains into the weld region was observed. No
distinct transition in microstructure was observed from the base- to the weld-metal regions.
This observation was confirmed by noting essentially the same microhardness values for
base-metal, HAZ, and the weld-metal region. The uniformity in microstructure and
microhardness was also confirmed by the failure of the tensile specimens in the middle of
the gage section, which normally happens for a material of uniform properties.

The similarity in microstructure and microhardness of the base and weld metals
yielded tensile properties of the weldment specimens to match the base-metal properties. A
similar match was also observed for the creep-rupture properties. It is important to note
that although the properties of the weldment specimens matched the base-metal properties
in the as-cast condition, the ductility values for FAPY alloy are low at temperatures
<100°C.

An unusual event of cracking was observed in this weldment section of the 51-mm
(2-in.) -thick plate during the etching process to reveal its macrostructure. The acid-etching
process is known to produce hydrogen, and it is this hydrogen that is believed to have
caused the cracking. This cracking was observed only in the 51-mm (2-in.) -thick plate and
not in the plates of 12 and 25 mm (0.5 and 1 in.) thicknesses. Since the hydrogen-related
cracking typically requires the combination of stress and the presence of hydrogen, it is
believed that a PWHT of 750°C was not adequate to relieve the welding stresses for the
S1-mm (2-in.) -thick plate. However, the same PWHT must have been adequate for the
thinner sections, which had lower welding stresses to start with because of their thinner
sections. Thus, it is believed that a higher preheat or PWHT temperature than 750°C may
be required for section sizes of = 51 mm (2 in.). Additional work is required to establish
the preheat and/or PWHT requirements as a function of section thickness for the FAPY
alloy.
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7. SUMMARY AND CONCLUSIONS

The as-cast plates of 12-, 25-, and 51-mm (0.5-, 1-, and 3.2-in.) thicknesses of
FAPY alloy were welded using the GTA process and a 3.2-mm (0.125-in.) -diam filler wire
of matching composition. Welds were made without any preheat and with preheats of
200 and 350°C. Crack-free welds could be prepared in 12-mm (0.5-in.) -thick plates
without preheat. However, the thicker plates required a preheat for crack-free welds, and a
temperature of 200°C was acceptable up to plate thickness of 51 mm (2 in.). The preheat
temperature for thicker sections may be higher and needs to be determined. The PWHT at
750°C for 1 h was found to lower the transition temperature and increase the upper-shelf
energy during Charpy-impact testing of the 12-mm (0.5-in.) -thick welded plate. Thus, all
the other weldment properties were determined in the postweld heat-treated condition.
Tensile and creep properties of the weldment specimens matched the properties of the base
metal. These results were explained on the basis that the microstructure and microhardness
of the weld region were similar to the base metal.

Major conclusions from this study include:

1. The cast plates of the FAPY alloy can be welded by a commonly used GTA process. A
filler wire of composition matching the base metal is acceptable. No preheat is required
for plates of 12 mm (0.5 in.) thickness. Plates of > 25 mm (1 in.) thickness require a
preheat of at least 200°C. A PWHT at 750°C for 1 h is desirable to improve the
Charpy-impact properties and to reduce the suceptibility of the weld to hydrogen-
related cracking. A PWHT temperature of higher than 750°C is probably required to
eliminate the hydrogen-related cracking in the 51-mm (2-in.) -thick welds. However, a
correlation of PWHT as a function of section thickness needs to be developed.

2. Tensile and creep properties of the weldment specimens matched that of the base metal.
These results are explained on the basis that the microhardness and microstructure of

the welds are very similar to the base metal.
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8. FUTURE WORK

Additional work is required on welding of thicker sections of the FAPY alloy:

1. Prepare welds in a section thickness greater than 51 mm (2 in.), and determine the
PWHT temperatures to eliminate hydrogen-related cracking. Macroetching solution
can be used to determine the presence of hydrogen-related cracking.

2. Determine the effect of PWHT temperature on Charpy-impact properties. Use these
data to select the optimum temperature for the best combination of transition
temperature and upper-shelf energy.

3. Determine additional weldment creep tests to obtain data for rupture times exceeding

1000 h.
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