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« “Arcs” are high-current density, low voltage discharges
In partially-ionized gases
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Perform PIC/DSMC simulation of vacuum arc formation

Overall research goal

O Start with vacuum gap between two electrodes

O Can be 1-D, or quasi-1D

L Simulate emission of electrons, ions, and/or neutrals from electrodes
U Include important ionization processes

U Rapid rise in gap current

O Current avalanche --- breakdown

O Simple circuit in series with arc

0 Simulate beyond breakdown
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Previous state-of-the-art in arc modeling

Brief literature survey summary of prior arc modeling efforts:
« Continuum models, no particles

* lonization events not explicitly modeled

» Simplistic electrodes

» Conservation of energy, momentum, mass

Other particle simulation effort: group at CERN doing 1D particle model
of vacuum arc breakdown

http://www.ipp.mpg.de/~knm/CERN/spark.html
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Summary of simple 1D arc model

Simulation description:

* 1D PIC simulations

« 21 micron gap, 10kV potential drop

Cu electrodes

Assume constant emission of electrons and Cu neutrals from the cathode.
“Sputtering” model: particles hitting electrodes knock off more Cu neutrals.
Include elastic collisions and ionization collisions.

80 cells, 3.5 fs timesteps

Results:
Cu neutrals build up in the gap
lonization occurs, creating plasma in the gap

Breakdown occurs once the ionization mean free path < gap distance, which
happens when the Cu neutral density surpasses 1024 m-3

Space charge starts to affect fields when the electron density surpasses 102! m-3
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Simple vacuum discharge input parameters used
for the code-to-code comparison

Parameter Value

Scaling (general) parameters

Grid size Ax 0.26283 pm
System length Lgys 21.026 pm (80 cells)
Real particle to superparticle ratio per unit volume 2.5 x 101 /m?

Time step 3.5 fs

Injection from the cathode

Electron injection flux ®.- 1.483 x 10%° /m?/s
Neutral injection flux ® ¢, 1.483 x 10?7 /m?/s
Electron injection temperature T,.— 0.3 eV
Neutral injection temperature Tcy 300 eV

Boundary collisions at the electrodes

Cathode voltage (IAY
Anode voltage 10,000 V
Cu is reflected back
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Coulomb collisions between the pairs (e™, e7), (Cu™, Cu™), (e—, Cu™)

Collisions and reactions

Elastic collisions between the pairs (e~ + Cu), (Cu + Cu)

Impact ionization: e~ + Cu — 2 e~ + Cu™

Charge exchange and momentum transfer: Cu™ + Cu — Cu + Cu™
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Geometries used in the comparison

Cathode Anode
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21.026 pm, 80 uniform cells
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Vacuum arc breakdown simulation results using Aleph
(presented May 7, 2010 at Breakdown Physics Workshop @ CERN)
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Old results comparison
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Possible sources of discrepancies

Simulation geometry:

Particle move dimensionality (1D, 2D)
Field solve dimensionality (1D, 2D)
Mesh elements (line segments, triangles)

Mesh resolution (80 elements)

PIC technique details:

Field solver method (finite difference, finite element)
Charge assignment method and order
Field interpolation method and order

Particle pusher (Boris method, velocity Verlet)

Input parameters:

(See parameters listed in Table 1.)

Particle boundary conditions:

Injection velocity distribution (truncated Maxwellian)

At non-electrode boundaries (N /A, specular)

Collision methods:

Collision scheme (null-collision, no time counter)

Cross section data (see [28])

Cross section data interpolation method (linear, log)
Cross section data extrapolation method (constant, zero)
Post-collision energy partitioning

Post-collision scatter procedure

Collision processes included:

(cf. Secs. 4.1 and 4.2)

Tonization collisions
Coulomb collisions
Neutral-neutral elastic collisions
Sandia

Electron-neutral elastic collisions National .
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& Discovered and fixed an error in

Aleph’s collision code

|
n,n, d2, /87rkT\é

O \mAB)

Where o 1s a symmetry factor that 1s 1 for unlike molecules
(B #A) and 2 for like molecules (B = A).

ZAB

Eq. 6.15b, Vincenti and Kruger, “Introduction to Physical Gas Dynamics”

(We had 6 =2 1n all cases, so we were computing 2x too few A-B collisions)
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What are the differences between the PIC algorithms?

PIC step Aleph’s method

Arc-PIC method

Cloud-in-cell (CIC)

1. Interpolate charge to grid 523?5&31’;?32‘;?:#)
2. Compute potential on grid 2D finite element
3. Compute E Constant field in element
4. Compute F on particles F=qE

Cloud-in-cell (CIC)
1D finite difference
Cloud-in-cell (CIC)

F=qE
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Aleph field solver settings choices

Forward interpolation options (putting charge from particles on nodes or elements):
0) constant charge density in each element (this is the default, “0t order” method)
1) Node-based interpolation of charge within each element (feels like a “1%t order” method)

Here are the reverse interpolation options (putting E fields on particles):
0) constant electric fields within elements (this is the default, “0'™ order” method)
1) volume-averaged electric field within elements (feels like a “1%' order” method)

Tested all four combinations of (forward, reverse) interpolations:
(0,0)
(1,1)
(0,1)
(1,0)
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ow changes in field solver settings affect E
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How changes in field solver settings affect E

E (V/m)
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PIC algorithm comparison observations

The computed potentials were usually similar, but not identical.
The computed times-to-breakdown were very different.

Method to compute E exhibited the biggest difference between the
approaches.

Constant-field-in-element approach produced insufficient accuracy
for this problem at this mesh resolution.
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Changes in times-to-breakdown
as computed by Aleph
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Time-to-breakdown 225 1.85 204 087 042 041 045 044 124 044 042
Particle move dimensionality 1 1 1 2 1 1 2 2 2 2 2
Field solve dimensionality 2 2 2 2 1 1 2 2 2 2 2
Charge assignment order 0 0 0 0 1 1 1 0 1 1 1
Field interpolation order 0 0 0 0 1 1 1 1 0 1 1
Particle weighting / 276317917 1 1 1 1 1 0.1 1 1 1 0.1 10
Cross-section data interpolation log  linear linear linear linear linear linear linear linear linear linear ﬁandial
ationa
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* Lessons learned: causes of the big differences in

computed times-to-breakdown

Differences in the:

1.

Cross-section data, and its interpolation/extrapolation
Collision/chemistry methods
Post-collision scatter and energy disposal methods

PIC methodology
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After remedying the major causes of the
discrepancies, we observed much better agreement ...

Standard deviation in

Time-to-breakdown (ns) | 4 o 4o hreakdown (ns)

Aleph 0.42 0.03

Arc-PIC 0.45 0.03
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Spatial density distributions

Number densities across the discharge gap, averaged over the time interval between 3 and 3.5 ns.

Arc-PIC and Aleph show good qualitative agreement in all of the quantities, including the sheath region.
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Potential profiles

Potential profiles across the discharge gap, averaged over the time interval between 3 and 3.5 ns.
Arc-PIC and Aleph show good qualitative agreement in all of the quantities, including the sheath region.
The plasma potentials differ slightly.
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Time evolution of the current density across the gap
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Figs.(a) and (b) show the statistical variation in current density with

different seeds for Arc-PIC and Aleph, respectively.
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Time evolution of the current density across the gap

5-run average current densities for both codes.

The error bars represent the standard deviations produced by using different initial random number seeds.
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Early time particle densities

Time evolution of e, Cu, and Cu" average densities compared between Arc-PIC and Aleph.
Each data point shows the 5-run average density calculated from the 5 simulations initialized with
different random number seeds. The error bars represent the corresponding standard deviations.
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Particle densities vs time

Time evolution of e, Cu, and Cu" average densities compared between Arc-PIC and Aleph.
Each data point shows the 5-run average density calculated from the 5 simulations initialized with
different random number seeds. The error bars represent the corresponding standard deviations.
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Conclusions

1.

2,

Code-to-code comparison proved valuable.

Increased confidence in codes and their ability to model non-linear
phenomena.

Opened avenue for communication between research groups. Good way
to collaborate.

Essential to perform thorough V&V on PIC codes.

Simple 1D arc breakdown benchmark problem now well-
defined for use by other research groups.

Vacuum arc discharge model very sensitive to small
differences in input and methods.

Accurate PIC methodology and use of cross-section data
especially crucial. @ Sandia
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