
Realizing Exascale Performance for 
Uncertainty Quantification 

Eric Phipps (etphipp@sandia.gov), 
H. Carter Edwards, Jonathan Hu
Sandia National Laboratories

and
Clayton Webster

Oak Ridge National Laboratory

DOE Workshop on Applied Mathematics Research for Exascale
Computing

August 21-22, 2013 

SAND 2013-xxxx C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia 
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of 
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2013-7007C

mailto:etphipp@sandia.gov
mailto:etphipp@sandia.gov


Can Exascale Solve the UQ Challenge?

• UQ means many things
– Best estimate + uncertainty, model validation, model calibration, …

• A key to many UQ tasks is forward uncertainty propagation
– Given uncertainty model of input data (aleatory, epistemic, …)
– Propagate uncertainty to output quantities of interest

• There are many forward uncertainty propagation approaches
– Monte Carlo, stochastic collocation, polynomial chaos, stochastic Galerkin, 

…

• Key challenge:
– Accurately quantifying rare events and localized behavior in high-

dimensional uncertain input spaces
– Can easily require O(104-106) expensive forward simulations
– Often can only afford O(102) on today’s petascale machines



Achieving Exascale Performance Requires New 
Approaches

• UQ approaches usually implemented as an outer loop
– Repeated calls of deterministic solver
– Coarse-grained distributed memory parallelism over samples
– How do we achieve a 1000-fold increase in available uncertainty propagation?

• No increase in clock-speed
– Must increase parallelism

• No decrease in latency, latency hiding through instruction-level parallelism & out-of-order 
execution replaced by hardware multi-threading and vectorization

– Simulations must exhibit good data locality and expose sufficient fine-grained parallelism
– Extremely challenging for many simulation algorithms, e.g., sparse linear algebra on complex 

(unstructured) domains

• Little increase in total node count, dramatic increase in node-level parallelism
– Must evaluate multiple samples in parallel on each node

• Node memory increase of 0.1-0.01 of floating-point capacity
– Parallel sample evaluations must share data when possible (threads)

• UQ is a highly structured calculation
– Add new dimensions of fine-grained parallelism through embedded approaches



Scalar/Core-level Uncertainty Propagation

• Propagate collections of uncertainty information at scalar-
level of calculation
– scalar -> array (e.g., samples, PCE coefficients)
– random memory access -> contiguous array access
– scalar arithmetic -> parallel_for

0�

0.5�

1�

1.5�

2�

2.5�

3�

3.5�

0� 100� 200� 300� 400� 500�

Sp
e

e
d

u
p

�R
e

la
ve

�t
o

�M
at

ri
x-

Fr
e

e�
(O

ri
gi

n
a

l)
�

Stochas c�Discre za on�Size�P�

Threaded�Stochas c�Galerkin�Matrix-
Vector�Product�Speed-Up�

Intel�Sandy�Bridge�
CPU�(N=3)�

Intel�Sandy�Bridge�
CPU�(N=5)�

NVIDIA�Kepler�
K20X�GPU�(N=3)�

NVIDIA�Kepler�
K20X�GPU�(N=5)�

0�

0.5�

1�

1.5�

2�

2.5�

3�

3.5�

0� 100� 200� 300� 400� 500�

Sp
e

e
d

u
p

�R
e

la
ve

�t
o

�M
at

ri
x-

Fr
e

e�
(O

ri
gi

n
a

l)
�

Stochas c�Discre za on�Size�P�

Threaded�Stochas c�Galerkin�Matrix-
Vector�Product�Speed-Up�

Intel�Sandy�Bridge�
CPU�(N=3)�

Intel�Sandy�Bridge�
CPU�(N=5)�

NVIDIA�Kepler�
K20X�GPU�(N=3)�

NVIDIA�Kepler�
K20X�GPU�(N=5)�

0.8 

1 

1.2 

1.4 

1.6 

1.8 

0 5 10 15 20 25 30 35 

S
p

e
e

d
-u

p

Ensemble Size

MPI Communication Speed-up

0.8 

1 

1.2 

1.4 

1.6 

1.8 

0 5 10 15 20 25 30 35 

S
p

e
e

d
-u

p

Ensemble Size

MPI Communication Speed-up



Benefits

• Improved data locality

• Amortize latency/communication across UQ array

• New dimension for fine-grained parallelism
– Vectorization and hardware multi-threading

• Data reuse
– Mesh/graph data structures

• Solver/preconditioner reuse/acceleration
– Single preconditioner for UQ array
– Recycle Krylov bases
– Reuse multi-grid hierarchy/aggregrates
– Accelerate solver by interpolating between samples



Challenges and Opportunities

• Significant effort to refactor simulation codes
– Introduce abstraction at scalar level
– Template-based generic programming

• Increased cache pressure
– Can’t make UQ array too big

• Propagating samples together requires commonality in solution process
– Often need to refine UQ discretization near localized behavior/discontinuities/bifurcations
– How to group samples to exploit commonality when you have it, and separate samples when 

you don’t?

• Improve flop/byte ratios
– Embedded sample propagation doesn’t change flops/byte
– Stochastic Galerkin increases flops/byte

• Solvers/preconditioners optimized for embedded uncertainty propagation
– Kronecker product structure

• Partitioning, balancing, reordering of higher-order tensors


