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ABSTRACT

Photovoltaic (PV) system modeling is used throughout the
photovoltaic industry for the prediction of PV system
output under a given set of weather conditions. PV system
modeling has a wide range of uses including: pre-
purchase comparisons of PV system components, system
health monitoring, and payback (return on investment)
times. In order to adequately model a PV system, the
system must be characterized to establish the relationship
between given weather inputs (e.g., irradiance, spectrum,
temperature) and desired system outputs (e.g., AC power,
module temperature). Traditional approaches to system
characterization involve characterizing and modeling each
component in a PV system and forming a system model
by successively using component models. This paper
compares a traditional modeling approach using the
Sandia Photovoltaic Array Performance Model [1] to a new
method of characterization using a recurrent neural
network (RNN). The Sandia model predicts system
performance based upon given weather data and
individual component characterizations, while the RNN
“learns” the input/output relationships by training on a
correlated set of given weather and performance data.
The comparison of a traditional modeling technique and
the new RNN method serves to validate the accuracy of
the new method in comparison to a widely accepted
modeling technique. Modeling using an RNN may be
advantageous when component models are not available
for the components in a PV system, when the components
of a PV system are unknown to the modeler, or when
system components are installed or altered in such a
fashion that their model parameters are no longer
applicable.

INTRODUCTION

The photovoltaic (PV) community frequently uses
predictive system models to predict the output of a
particular PV system under a given set of weather
conditions. In a traditional PV modeling approach, the PV
system components (e.g. PV modules, inverter) are
characterized individually and sub-system models are
developed for the components. The sub-system models
are then used sequentially to determine a predicted PV
system output due to given weather inputs (e.g. Typical
Meteorological Year, Meteonorm). Thus the traditional
model approach may be used without constructing the
system. The model results have a wide variety of uses
including  pre-purchase = comparisons of  system

components, predicted payback (return on investment)
times, health monitoring of systems already in place, or
they may be used by utility providers to determine
expected-performance rebate incentives.

However, the traditional modeling approach requires that
the user know a great deal of information about the PV
system. The modeler must know what types of PV
components are in the system, and how many of each
component is present. Additionally, they must have
information on the performance properties of each
component, which may require extensive testing for use in
some PV models. Lastly, many traditional models then
make assumptions regarding the performance of
components in the system. For example, models may use
general “derate” factors to account for unit-to-unit variation
among components, variation of components in the

system from the component(s) characterized for
performance parameters, resistive wire losses, and
shading.

A recurrent neural network (RNN) has the ability to “learn”
the relationship between a set of input and output data,
and the relationship may then be used as a model to
predict output system performance when given a set of
input weather data. We have developed a method for
modeling a PV system using an RNN. The RNN requires
no information about the specific components of the
modeled PV system. Instead, the RNN learns the
relationship between input weather data and system
performance by training itself on a data set with concurrent
weather and performance data. The RNN may then make
predictions about system performance when given
weather data, even if the weather data was not in the
training data set. Thus, the RNN method models the PV
system as a whole, rather than modeling individual
components, and includes system loss factors such as
those described earlier. However, since a set of
concurrent weather and performance data is required, the
RNN technique may only be used to model systems which
are already in operation.

PROCEDURE
Test System Description

The test photovoltaic system is a 1.05 kWP rated PV
system in Albuquerque, New Mexico. The system uses
five monocrystalline silicon (c-Si) PV modules, facing
south, tilted at 35° from horizontal, and a 2 kW inverter. A
monitoring system records plane of array (POA) irradiance



via c-Si reference cell, ambient air temperature, wind
speed, module backside temperatures, and AC power at
two minute intervals. The monitoring system collected over
1 year of data while the PV system was in operation.

Recurrent Neural Network Model
POA irradiance, ambient temperature, and wind speed

were used as input data for the RNN model; the model
estimated (predicted) AC power and module temperature.
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Figure 1: Recurrent neural network used

The RNN is diagrammed in Figure 1, note that the RNN
size is (4 + 1) x 70 x 2 and all 70 hidden-layer neurons are
not shown in Figure 1 for brevity. Each line in the figure
denotes a synaptic weight, w, and each circle denotes a
single artificial neuron with transfer equation as shown in
(1). Activation functions, f, are either linear (unity gain) or
sigmoidal as shown in the figure. The use of a recurrent
neural network allows for the time-delayed prediction of
module temperature to be used as an input for the next
time prediction. Thus, future predictions about module
temperature and power include information from prior
module temperature predictions; which should allow the
RNN to correctly model the thermal mass of the PV
system.

y:f[ixiwij (1)

where:

y = output of the neuron

f = the activation function of the neuron
n = number of inputs to the neuron

x = the ith input to the neuron

w; = the ith synaptic weight to the neuron

The RNN training data set is approximately 30,000 data
points sampled at two minute intervals (41.6 days) from
late February through mid-April. The remaining 197,455
data points are reserved for testing the trained neural
network. The training process for the RNN minimized the
sum of mean absolute error (MAE) across both output
parameters over the 30,000 training patterns, as shown in
(2), by modifying the 490 synaptic weights within the RNN.

In this case, a particle swarm optimization (PSO) modified
the network weights to train the network and minimize
MAE [2].

Fitness = Z:MAEj = iilpﬁ, - X,
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where:
n = number of training data points or input data patterns
m = number of outputs

A

X, ;= estimated (predicted) value for output j, pattern i

Xi ;= measured value for output j, pattern i

Sandia Component Models

The application of the Sandia Photovoltaic Array
Performance Model and Performance Model for Grid-
Connected Photovoltaic Inverters [3] represents a more
typical PV modeling approach. Using these component
models requires the same 3 input parameters as the RNN
method, but also requires 3 PV module thermal
parameters, 11 module electrical parameters, 2 array
configuration parameters, 7 inverter electrical parameters,
and a set of typical “derate” factors (mismatch, diodes and
connections, DC wiring, and AC wiring) obtained from
PVWatts default derate factors webpage [4]. A data flow
diagram is presented in Figure 2.
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Figure 2: Data flow for component-based model

The Sandia PV Array Performance Model (SAPM) and the
Sandia inverter model are widely recognized models for
predicting PV system output based upon a given set of
meteorological and irradiance data. Unlike the RNN
model, these models can predict PV system output without
requiring prior performance and weather data, and thus
may be used prior to system installation. However, as
noted above, the performance parameters for the
particular system components (modules and inverters)
must be determined from empirical testing and the number
of components within the system must be known.



RESULTS

We trained the neural network to find the 490 weights to
minimize the mean absolute error of both the module
temperature and AC power over only the 30,000 point
training data set. After establishing the synaptic weights,
the entire 227,455 point data set (training data and test
data) is processed to establish predictions of AC power
and module temperature from the RNN. Figure 3 and
Figure 4 show two sample days of predictions from the
RNN and indicate that the RNN model is appropriately
determining the relationships on both clear and partly
cloudy days. Figure 5 and Figure 6 show the modeled vs.
measured performance of the RNN on the aggregate
227,455 point data set. The coefficients of determination
(R2) shown indicate that the recurrent neural network is
capable of accounting for over 99% of variation in AC
power, and over 95% of variation in module temperature.
Calculation of the coefficient of determination is shown in

(3).
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where:
Xi = the i" measured data point

A

Xl. = the i"™ modeled output data point

)? = the mean value of all measured data points

As the training data consisted of only data from late
February to mid-April, the ambient temperatures
experienced during training are lower than the ambient
temperatures included during the summer of the testing
data, requiring the RNN to extrapolate the performance of
the system in high ambient temperatures. The irradiance
and wind speed during included in the training data nearly
cover the full range of irradiances and wind speeds in the
test data.

Note that during the operation of the system there were
approximately 2-3 days during which the PV system was
not performing correctly and the AC power measured 0
watts. These data were nonetheless included in the
evaluation of both models.
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Figure 3: Estimated and Measured AC Power for a
clear and cloudy day using an RNN model
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Figure 4: Estimated and measured module
temperature for a clear and cloudy day using an RNN
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Figure 5: Measured AC power vs. RNN estimated AC
power with 1:1 line
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Figure 6: Measured module temperature vs. RNN
estimated module temperature with 1:1 line
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The Sandia component based models perform similarly as
shown in Figure 7 and Figure 8. The component-based
models clearly perform better in predicting module back
temperature with a tighter distribution around the 1:1 line.
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Figure 7: Measured AC power vs. component-model
estimated AC power with 1:1 line

50

40+

Measured Tmod
[ ]
[=]

-20 0 20 40 60 80
SAPM Estimated Trmod

Figure 8: Measured module temperature vs.
component-model estimate with 1:1 line

The mean bias error (MBE), mean absolute error (MAE),
and root mean squared error (RMSE) for each model can
provide some insight on the overall performance of the
models.

Model RMSE MAE MBE
SAPM 3.050 % | 1.052 % | -0.069 %
RNN 3.198 % | 1178 % | 0.321 %

Table I: Error measurements for AC power for both
models, measured in % of rated power (W/Wp)

Model RMSE MAE MBE
SAPM 3.1 23 1.0
RNN 3.2 1.9 -0.4

Table II: Error measurements for module backside
temperature for both models, measured in °C

While the overall performance predictions of a model are
important, they do not show the model’s shortcomings with
respect to its input parameters. It is important to examine
the model residuals (measured value — modeled value)
with respect to the model inputs in order to evaluate the
tendency of a model to incorrectly predict output across a
range of input values [5]. Results of such an analysis are
shown.
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Figure 9: RNN modeled AC power residuals vs.

reference POA irradiance
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Figure 10: Component-based modeled AC power

residuals vs. reference POA irradiance

Observing the model residuals of AC power with respect
to reference irradiance (see Figs. 9 and 10) shows that the
RNN model is able to capture much of the same effects as
the component-model, but has a wider distribution of
residuals at high irradiance (an undesirable trait).

'S
(=]

[h*] w
[=] (=]
T

Module temperature residuals (C)

2 4 8 8 10 12 14 16
Wind speed (m/s)

Figure 11: RNN modeled module temperature
residuals vs. wind speed
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Figure 12: Component-based modeled module
temperature residuals vs. wind speed

The residuals for predicted module backside temperatures
with respect to wind speed are the most notable of the
temperature residuals. Note that the component-based
model improves with increasing wind speed, but the RNN
based model does not show similar improvement.

CONCLUSIONS

The results presented show that modeling and
characterizing an existing PV system with a recurrent
neural network may provide adequate results for existing
PV systems, although in this case, the RNN model did not
perform as well as the component-based model. Thus, it
seems that in the case where component parameters are
known, a ftraditional PV modeling approach may yield
more accurate model results.

The RNN model correctly learned the relationships
between the weather data and performance data; the
characterization required only concurrent input weather
and output performance data. As such, a characterization
may be performed when standard modeling parameters
are unknown or may not be applicable due to



abnormalities in the system (e.g. location, mounting).
Furthermore, the RNN was able to learn the “derate”
factors associated with the system. However, it is
important to remember that the required performance data
limits the use of an RNN characterization to existing
systems which have been monitored for several weeks.
This limitation will not allow an RNN model to provide
energy predictions prior to installation, but it should allow
for degradation or soiling detection, detection of
performance-affecting failures on larger systems, or
calculation of energy rebates by utilities.

The capability of an RNN to accurately characterize a
system is entirely based upon the set of training data
provided to train the RNN. As such, an optimal training
data set should include data which is representative of the
full range of expected conditions. Extrapolation outside the
range of training data is possible, but may not be as
accurate. Of course, the same caveat may apply to testing
components for generation of performance parameters in
component-based models.

The characterization of a PV system using a recurrent
neural network is clearly a possibility in circumstances
which do not allow for traditional modeling techniques. The
use of a neural network also makes it trivial to add input
and output data fields which are not included in this study.
For example if POA irradiance from a spectrally similar
reference cell is not available, it may be possible to use
information such as sun position and airmass (as a proxy
for detailed spectral information).

Further work on the subject of RNN characterization and
modeling should extend the modeling capabilities to more
difficult data sets (e.g. without spectrally corrected POA
irradiance), include more input parameters, and attempt to
learn using a smaller training data set.
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