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Abstract—Large scale scientific applications are often bot- be representative of reading the temperature across a
tlenecked due to the writing of checkpoint-restart data. Mwh simulation space, for example.

work has been focused on improving their write performance. « Read an arbitrary orthogonal subvolume (c.f. FigLii).

With the mounting needs of scientific discovery from these . .
datasets, it is also important to provide good read performace ¢ R€ad an arbitrary orthogonal full plane (c.f. Figure).

for many common access patterns, which requires effectiveada « Read multiple variables together. This would be repre-
organization. To address this issue, we introduce Elastic &a sentative of reading the components of a magnetic field
Organization (EDO), which can transparently enable different vector, for example.
data organization strategies for scientific applications.Through
its flexible data ordering algorithms, EDO harmonizes different
access patterns with the underlying file system. Two leveld data
ordering are introduced in EDO. One works at the level of data
groups (a.k.a process groups). It uses Hilbert Space FillmCurves
(SFC) to balance the distribution of data groups across sta@ge
targets. Another governs the ordering of data elements witim a
data group. It divides a data group into subchunks and strikes
a good balance between the size of subchunks and the number
of seek operations. Our experimental results demonstratehat . . .
EDO is able to achieve balanced data distribution and improe Fig. 1: A 5x5x 5 Array (k: fastest dimension)
the read performance of multidimensional datasets in scidific
applications. Other reading patterns are either composed of a mixture of
these patterns or are minor variations. For example, rgadin
entire checkpoint-restart datasets can be perceived ag-an e
Large-scale simulation codes can generate massive mighded case of reading multiple variables together. Fidure
tidimensional datasets, from checkpoint-restarts, nooinigj, gives an example of a $5x 5 3-D array (Figurel(a), a
analysis, and visualization output. Their execution ieothot- 3 x 3 x 3 subset (Figurel(b) of the array and three 5
tlenecked by the cost of I/O because of their gigantic dééaseplanes (Figurel(c)) in three dimensions: i, j, and k; where
Many efforts have focused on decreasing the applicatipis the primary, i.e., the slowest varying dimension, angKk i
turnaround time by studying the output side of the problerthe tertiary and fastest varying dimension. Data in theyaisa
but few have systematically examined the read performahcesgored first along the fastest dimension k, then along the slo
scientific applications on large-scale supercomputerspit® dimensions, j and i, on disk.
the importance of read performance to scientific simulation Among these patterns, reading orthogonal planes has been
and analysis workflows. ~ the least studied. However, it is a very commonly used data
To improve read performance, a thorough understanding@ittern by scientific applications. For example, for contibus
application access patterns is crucial. Based on the aithqjiydies with S3D [16], the computation was targeted at a
direct experience with many application teams in the U.8. aariable of 1408 1080x 1100 points (12GB), but the majority
beyond, including combustion (S3D [6]), fusion (GTC [20]of analysis is performed on the orthogonal planes of the
GTS [45], XGC-1 [9]), earthquake simulation (SCEC [10])variable (either 1408 1080 or 1080« 1100 points). However,
MHD (pixie3D [4]), numerical relativity codes (PAMR [37]), the performance of reading such planes (aj{anar read
and supernova (Chimera [29]) codes, there are four maiioften bottlenecked by the extremely poor performance in
fundamental reading patterns for application data arglysi retrieving data along slow dimensions from multidimension

« Read all of a single variable (c.f. Figutéa)). This would arrays [8].
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(a) Variable (b) Subvolume (c) 2-D Planes

I. INTRODUCTION



There are two main issues faced by such access patteémproved by EDO in a balanced manner across all dimensions.
of multidimensional arrays. The first is the disparity betwe A maximum speedup of 37 times has been observed.
the order of storage and the order of access for data elementhe rest of the paper is organized as follows. In Sectipn
in a multidimensional variable. When data is not traverseude introduce the background for this work. We then describe
in the order in which it is stored, reading cannot benefihe design of EDO in Sectioll. Section|V provides a
from techniques such as data prefetching, caching, etc. Foathematical analysis of data concurrency using different
example, when reading ap plane, data elements are storedata organization strategies. Sectignfurther validates our
non-contiguously along these slow-varying dimensionss Thstrategy through a comprehensive set of experimentaltsesul
requires a large number of time-consuming seek and re@dctionVI provides an overview of related work. Finally, we
operations, so that the read performance degrades sigrdbinclude the paper in Sectiofil.
cantly. However, this does not happen jto planes whose
data elements are stored along the fast-varying dimensions
Such disparity leads to a phenomenon calftformance  In this section, we present a short discussion of existirig da
bias against the slow-varying dimensions. A current popularganizations and their performance issues. EDO is derived
solution to this problem is to store multiple copies of thmsea from ADIOS (Adaptable I/0 System), an I/O middleware from
data with a different dimension being used as the prima@ak Ridge National Laboratory. We also provide an overview
dimension in each copy. For example, climate researcherso&tADIOS and its BP (Binary Packed) file format.
the Geophysical Fluid Dynamics Laboratory (GFDL) make o
multiple replicas of all datasets witk y, z andtime as the A- €ommon Data Organizations
fastest dimension, respectively. Such workarounds helpae  When an application needs to retrieve data elements from
the reading time [11], but increase the total storage sizé bya multidimensional dataset, two main factors affect thelrea
times. Second, there is a lack of data concurrency wherparformance. One is the contiguity of these data elements,
subset of data elements is retrieved from a multidimensioremother is the number of concurrent storage devices that
variable. When the subset of data elements is not logicallye supplying the data. The former determines the maximum
contiguous, it is often concentrated on only a few storageimber of seek operations, though the actual number of seeks
devices among a large number of total devices that are usednay be reduced by reading extra data between data elements.
store the entire variable. For example, with the LC layout, Bhe latter determines theoncurrencyof storage access in an
plane in the fast dimension will be located on only one steragpplication.
target if the plane size is less than the stripe size. In th&&c  Currently there are two popular data organizations: Idbyica
applications can not make use of aggregated bandwidth fraentiguous (LC) and chunking. Figu&compares these two
all devices, and are then limited to the bandwidth availabtiata organizations and show how the read performance can be
from a single storage device. Theses issues are examinedlifferent between these organizations. In the figure, a 2réya
detail in Sectionll-A. with 9x9 integer elements is written on three storage targets
To enable fast access of multidimensional scientific d&gaseausing LC and chunking, respectively. The stripe width isaqu
it is important to investigate a strategy that can addresk bdo 36 bytes. The arrowed lines represent the order in which
issues. In this paper, we propose an I/O framework namtieese data elements are stored on storage devices, e.gctObj
Elastic Data Organization (EDO) that can support flexibl8torage Targets (OSTs) in the case of Lustre file system. The
data organization strategies for different scientific agions. circled numbers indicate targets on which data elements are
EDO addresses the challenging issues faced by planar reladated; the shaded squares are the requested data elethents
through two levels of data ordering algorithms. At the tome read in the row-major order with three processes, for both
level, it uses Hilbert Space Filling Curves (SFC) to balaneawganizations, each process needs 1 seek operation and 1 rea
the distribution of data groups (a.k.a process groups)sacro@peration to retrieve the data. However, chunking is exgzbct
storage targets. As we will discuss in Sectidh, SFC to be 3 times faster than LC since LC serializes read requests
distributes data elements across parallel storage tatgetsirom three processes to one OST.
aggregate their bandwidth without file system restrictiand Concurrency issues are also observed for LC when re-
improve concurrency for the aforementioned access pattertnieving a column, as shown in Figurz Furthermore, the
At a low level, EDO divides data elements within a data groyperformance is degraded because each process either has to
into subchunks, and balances the cost of seeking through spbrform 3 seeks and 3 reads to retrieve the data, or one read to
chunks and that of reading data from them. Neither orderiggt 19 elements at a time. The former is slow due to frequent
algorithm precludes portability nor requires any applmat expensive seek calls; the latter is also inefficient sincé 84
level changes. They are used to decide the placement of datira data is retrieved. Chunking can not help for suchei
elements for optimal concurrency and better exploitatibn patterns as well. Every process either needs the same number
bandwidth from storage devices. of seek and read operations to obtain the requested data, or
We evaluate the performance improvement for planar readdrieves 67% extra data. Meanwhile, chunking suffers from
on the Jaguar supercomputer at Oak Ridge National Lalsimilar concurrency issues. Processes are contendingala s
ratory. We show that the performance of planar reads can tniember of storage targets (onSTOin this case).

Il. BACKGROUND
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Fig. 3: Data Organization of BP File Format (SFC) to balance the distribution of data groups (i.e., PGs)
across storage targets. At the low level, EDO divides data

ADIOS has demonstrated significant performance bene Isem_ents within a data group into subchunks, and organizes
for a number of petascale scientific applications [1], [25 ,ata} in subchunks. o
[27], [47], [36]. It uses a default file format called BP. In F|gure35(a) and 5(b) compare data organization between
this format, ADIOS applies the chunking strategy for stgrinthe linear placement (as in ADIOS) and the Hilbert SFC-

multidimensional datasets. Each process is assigned dae (9 sed placement as introduced in EDQ' A. 2-D array (.)f .16
chunk from one dataset after domain decomposition. If t unks is used here as an example to simplify the description

application needs to output multiple datasets, each s ese chunks are written to 4 storage targets (OSTs) via 16

have multiple data chunks, one from each dataset. A groupp(gpcesses._ . .
chunks from one process, along with their attributes such @én the original ADIOS, each PG is placed on one storage
a

data size and offsets, are grouped together and stored Syce in a round-_robm fashion. Good concurrency can be
larger unit, calledProcess Group(PG) in ADIOS. We also achieved in row-major order because sequential PGs areglac

refer to it as aData Group An example of BP file output for on different OSTS, leading to good data distribgtion. Hoevev
one dataset written by N processes is shown in Figur&ll .SUCh placement may face SEVEre concurrency 1ssues when data
PGs are placed within BP file in the order of process IDs. IS acc_essgd along the slow-varying dimensions, similahéo t
case in Figure(b), .

[1l. DESIGN OFELASTIC DATA ORGANIZATION (EDO) A better method is needed to order PGs so that data chunks

In view of the performance issues of existing data ofn any dimension can be clustered, i.e., achieve good data
ganizations, we design EDO as an extension of ADIOS t@cality. We use the HilberSpace Filling Curve(SFC) [17]
support elastic data organization algorithms. EDO retaiR§cause it is a strategy to map a multidimensional space
many salient features of ADIOS, including NSSI [34] foPnto a one-dimensional space, and has been used in a wide
staging, DataTap [2] for asynchronous I/O, and Dataspazje [Variety of applications, especially when data locality i o
for memory-to-memory code coupling. Figureshows the concern. The Hilbert curve guarantees the best geometric
software architecture of EDO. It focuses on enabling afasfPcality properties [33]. Additionally, the cost of transfing
organization algorithms for different scientific applicats. the index of data units is low [19], a strength also shared by
EDO supportdMulti-level Data OrganizationVarying strate- Other strategies such as the morten (z-curve) index.
gies are provided as selectable algorithms to determine thd he 2-D array on the left of Figui®b) shows the placement
placement of data units in EDO. These include the defa@t PGs using Hilbert curve. Using this algorithm, data chaink
linear placement, Hilbert Space Filling Curve (SFC), an@re shuffled among all OSTs. For example, instead of writing
subchunking. Z-curve ordering is still in the developmént. to OST2, chunk 5 will be placed on OST3, while chunk
the rest of the section we discuss two algorithms Hilbert SF&4 Will be placed on OST2 instead of OST3. This strategy
and subchunking in detail, and describe how they are usedd@es not impact the read performance of the entire array

determine different levels of data organization in EDO. because the number of total storage targets remains the same
) o A slight impact is observed for the row-major order, such as
A. Multi-Level Data Organization in EDO the first and second rows, where data chunks are now placed

EDO formulates the ordering of data placement into twon fewer storage targets. However, a significant differéace
levels. At a top level, it uses Hilbert Space Filling Curveshown for data access in the column-major. Instead of sgidi



among multiple rows, many data chunks become sequentiatlyunk contains many data elements, 16 in this case. In the
organized. Thus when one column is requested, the targetemjinal ADIOS, such elements inside a data chunk are ocdere
data chunks will spread to 3 OSTs, compared to only 1 OST a logically contiguous manner. With subchunking, a chunk
under the original data organization. Thus the Hilbert euris divided into 4subchunksThese subchunks are then stored
can improve concurrency for data planes from slow-varyifgased on the linear ordering. Note that, at present, SF€dbas

dimensions.

ordering is not necessary inside an ADIOS chunk, because
the number of subchunks is typically small. EDO does allow

Q:_@__@__@ other ordering algorithms when the need arises. With such
13| 14 | 15 | 16 H H H H f
T organization, the overhead of retrieving on column-magr ¢
0<0- 00| PR e e e be decreased significantly. As show in Figitehe overhead
O g D e e [N P is reduced from 9 to 2 elements (light shaded blocks) when
96 on Do IS re 9 :
O %‘% 1234 the column (dark shaded blocks) is requested, with 1 more
00-0+0| Y Logically contiguous seek operation required.
Pt sy IV. ANALYTICAL MODELING OF DATA CONCURRENCY
[o]1]2]3]4]5]6]7]8]9]10]11]12]13]14]1s] ) , L . .
1 1 1 1 To validate the function of new organization algorithms in
[14] [1s] EDO, we analytically model the performance of differentadat
g organizations, where a 2-D plane is retrieved from a 3-D
% dataset. We first introduce one formula to quantify the data
— — —— — concurrency. Our study is based on the Lustre [9] file system.
OST1 0OST2 OST3 OST4 X -
The concurrency of a plane is determined by the number of
(a) Linear Placement in ADIOS OSTs that data elements are placed. While the placement
of data elements are determined by their offsets within the
o0 006 31215 16 file and striping parameters. Thus, we introduce the folhgwi
é é__é ¢ w0 n formula to calculate the concurrency:
A-K
O "o et 8o | e
i z m% 1D [P Concurrency= |oo|_Jaz| J...| Jail,where
Subchunking of fse . .
9‘ 'Q = W\Nigth%stnpecounm €0...(n—1)]
&” -7 T T~ RN
[o]1]5]a]8]12]13] 9 [10]14]15[11] 7]6]2 ]3] (1)
1&11 |-lil—| 1&11 J&lj wheren is the number of data elements on the plane. Note
that the offset of data element is different under differdsia
12 13 H H
tions.
| B ] organiza
— — — Based on the above formula, several programs are developed
ost2 o5 osm to calculate the concurrency of reading 2-D planes from a 3-D

data array. We then compare the average concurrency across
three dimensions. Figuré shows the result of concurrency
when reading 2-D planes from an 82@00x 800 3-D global
EDO supports a second level of data organization: intra-RaBray. The initial array is created by 4,096 processes. Each
ordering. This level governs the order of data elementslinsiprocess writes 58 50 x 50 elements either as a 3-D chunk
a PG. For applications that generate gigantic datasets, th@ a contiguous segment, depending on the data organization
PGs can grow very large to the extent in which data elemenitke stripe size is 1MB. With such dataset, we vary the stripe
inside a PG are sparsely retrieved for certain visualipati@ount from 2 to 160, the maximum stripe count allowed by
and the analytics tasks. As discussed in sectieA, one Lustre, and compare the data concurrency on three dimension
way to read in column-major order with chunking involvesising different organization strategies. Note that thetégcal
retrieving redundant data. Such approach is efficient wkaéa dmaximum concurrency for a plane equals to the configured
chunks are small, where sequential read has less overhstighe count for the output file. An optimal data organizatio
than frequent seek operations. However, when data chusk®uld show a concurrency that is equal or close to the
are large, the time of retrieving extra data can be significamaximum concurrency on all dimensions.
For example, retrieving a column from a 2-D array with Under the logically contiguous organization, shown by
1200*1200 elements requires 92% read overhead. Figure 6(a) the average number of OSTs fgk planes
Thus, we introduce a subchunking algorithm at the intréas consistently small. Severe contention will occur if such
PG level. Subchunking divides data in a PG into smallglane is retrieved by many processes in parallel. The data
subchunks and order them according to the chunking strateggncurrency ofik planes varies. In some cases, It drops to
As shown in Figures, one PG contains one data chunk; eadess than half of the stripe count. The planes have the

(b) SFC-based Placement with EDO
Fig. 5: Comparison of Different Data Organizations
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Fig. 6: Concurrency Modeling of a 2-D Plane on 3 Dimensions

highest concurrency. Note that the highest concurrencyg ddex-core AMD Opteron 2435 (Istanbul) processors running

not necessarily mean the best performance which also depeatd 2.6GHz, 16GB of DDR2-800 memory, and a SeaStar

on the contiguity of the read operations. 2+ router. The entire partition contains 224,256 proce&ssin
Figure 6(b) shows the data concurrency using the linearores and 300TB of memory. The Spider file system is the

placement of data chunks. Thi& planes have the highestlargest Lustre file system in the world, with 672 storage

concurrency, i.e., they are able to use the maximum numhargets (OSTs) on its widow-1 section and over 26,000 dient

of OSTs. Due to high variances of concurrency onithand and it is the fastest Lustre file system in the world with a

ij planes, low concurrency for these two planes is commaemonstrated bandwidth of 240 GB/s.

For example, when a stripe count is set to the maximum 160A self-contained 1/0 kernel for S3D [6] from Sandia Na-

on Lustre, where the highest aggregated write bandwidthtisnal Laboratories is used in our experiments. S3D is a-high

expected, the resulting concurrency for planar reads feratfidelity, massively parallel solver for turbulent reactifigws.

low to 80 and 10 for thek andij planes, respectively. It employs a 3-D domain decomposition to parallelize the
Figure6(c) shows the data concurrency of Hilbert curve. Alsimulation of combustion. S3D generates datasets of difter

three types of planes show close-to-optimal concurrenoyem sizes. Four test cases: small (S), medium (M), large (L) and

than 76% of the available storage targets are utilized. & haxtra large (X) are shown in Table

is little variation among different types of planes. Thus, a

balanced performance can be expected. When the stripe count TABLE I: Test Cases Written by 1616x 16 Writers

for an array is set to 160, the Hilbert curve organization is Per Process Entire Array
able to achieve a concurrency of 132, 130 and 122 OSTs, Elements | Data Size| Elements| Data Size
respectively forjk, ik, andij planes. There are cases that the S| 20 625KB | 320° 250MB
linear placement can utilize more OSTs than the Hilberteurv M 50 0.95MB 800° 3.868
arp i ) L 100° 7.6MB 160C° 30.5GB
for instance when the stripe count is 121. But such sweet X 2508 1192MB | 2006 | 476.8GB

spots require either a sophisticated calculation that Meg

the number of read processes, the stripe count, the stripe

size, the size of dataset, and/or an extensive set of tuning\ccording to the previous practice with ADIOS on Jaguar,

experiments. Worse yet, one set of parameters will not fit fi#e stripe size is set as the size of PG, a technique that

different multidimensional data arrays. Application sttists Maximizes concurrency and reduces false sharing on thed_ust

would rather be relieved from having to understand sudte system. A separate test program is created to read planes

calculation or go through time-consuming tuning experitaenand subvolumes from the logically contiguous file format.

The Hilbert curve-based ordering frees them from such per-We measure the read performance using three different types

formance concerns. Application scientists can then iwlif ©Of data organization strategies: Logically Contiguous XLC

choose the striping parameters for their datasets, anggerce linear placement of PGs by the original ADIOS (ORG), and

a consistent and well balanced read performance in returnEDO (EDO). Each test case is run 10 times for every data
point. The median of top five results is chosen to remove the

V. EXPERIMENTAL PERFORMANCERESULTS transient effect.

We deploy EDO on thdaguarsupercomputer at Oak Ridge
National Laboratory (ORNL) to evaluate its performancéa.‘
Jaguar is currently the second fastest supercomputer in th&Ve first evaluate the performance of planar reads. In this
world [31]. It is a massively parallel, distributed memoryest case, only PG-level organization using the Hilberveus
system composed of a 2.3 PetaFlop/s Cray XT5 partition aagplied by EDO. As shown in Figur@ the most variation is
a 263 TeraFlop/s Cray XT4 partition, a 5 PB file systembserved for linear placement when the stripe count isitieis
known asSpider The Cray XT5 partition is used for ourby 2. Linear placement can achieve better concurrency when
experimental evaluation. It contains 18,688 compute nodi stripe count is a prime number. We set the stripe count to
besides login/service nodes. Each compute node conta@ts dwo representative cases, 128 and 137, respectively. Table

. Performance of Planar Reads with PG-level Reordering



shows the theoretical concurrency achievable by diffedetd @152

organizations on three dimensions for two cases: S and X. Tlesol — °%

numbers are calculated based on the formula we introduced3n®
sectionlV. The maximum or the exact number of OSTs are&
listed wherever applicable. “

20 1 Hfm |
0

; : ; ; Q9% 998 392 392 39
As discussed in sectioh-A, the read performance is also Ho o o o
impacted by the number of seek operations. Tdblegives Number of Readers
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Number of Readers

(b) Case X (jk)

different organizations when 64 processes (readers) @e. us 100
The numbers may vary when the number of readers change$.
ORG and EDO both are based on ADIOS BP format, resulting'j:i10
in identical numbers of seek operations. Because ADIOS useg
aforementioned strategy that reads in redundant data td av0§
frequent seek operations, it requires much less seeks cethpa *
to LC. When 64 (8< 8 on one plane) readers read out the data
written by 4096 (16< 16 on one plane) writers, each reader

Number of Readers

(c) Case X (ik)

Bandwidth(MB/Sec)

64
Number of Readers

128 256 512

(d) Case X (ij)

needs to retrieve 4 (2 2) PGs. Thus 4 seeks are required fofid- 7: Planar Performance (writers=4096, stripe=128ngla

each process. We omit one seek operation needed to conff (S/X) = 800KB/122MB)
the variable metadata. Because the metadata is only read by

the first process, and then passed to the rest of processes. Fignificantly. In contrast, ORG and EDO are able to bring the

does not affect the overall analysis. read performance ak andij

planes close to that of thg

planes in Case S. The decreasing number of OSTs leads to

TABLE II: Concurrency of Planes (number of OSTS)
(a) stripecount=128

jk ik ]
EDO (Max/Min) | 100/92 | 104/56 | 104774
ORG 128 16 8
LC (S/X) 13/1 | 10/128 | 28/128
b) stripecount=137 . . .
(®) ﬁk T i it achieve much higher read
EDO (Max/Min) | 1247115 135/105 | 134/107
ORG 137 137 137
LC (S/X) 1371 | 137/137| 137/137

a performance loss to ORG, especially for fljeplanes. In
Case X, ORG performs similarly compared to LC i&nand

ij planes because small concurrency and large amount of read
overhead unnecessarily consuming a lot of I/O bandwidth.
Even though EDO suffers from the same amount of read
overhead on these two dimensions, good concurrency helps

performance.

Figures8(a)and8(b) show the peak performance of two test
cases. Good concurrency and fewer seek and read operations
help EDO achieve a maximum speedup of 37 times and 7

times for planes of slow-varying dimensions compared to LC
and ORG, respectively. We also observe that read overhead of

TABLE Ill: Number of Seeks per Reader (64 Readers)

chunking do not impact the performance of EDO for Case S.
But distinct performance differences are observed for Case

S X
[C T ADIOS I T ADIOS across three planes.
jk | 40 4 250 4
ik 40 4 250 4 100
i] | 160 4 62500 4

h(MB/Sec)

The performance results for a stripe count of 128 are showh *
in Figure 7. For both cases S and X, LC has better of
close performance compared to the other two organizations,
with small numbers of readers gk planes. This is because
LC places these planes as large, sequential data blocks to

EDO

(a) Case S (stripe=128)

ORG LC

10,000

L
= o
1) S
S =]

Bandwidth(MB/Sec)

=
o

EDO

(b) Case X (stripe=128)

ORG LC

a few storage targets while the same plane spreads acrqé'%oo
many OSTs in small units under the other two organization§.
Small number of readers also result in more seeks for eagh
process with the ADIOS BP format. Thus, LC particularly: i}
favors a small number of reading processes to retrieve data.
More processes suffers from contention because read itsques :
will conflict with each other on a few OSTs. The story is
different forik andij planes. Because a large number of seqiﬁg'
and read operations are required, and because data Spr%@ﬁl&scale)
across a small number of OSTSs, the performance of LC drops

200 proveseeeesim e
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EDO LC

(c) Case S (stripe=137)

8: Performance Differences Across Different

10,000
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ORG LC

(d) Case X (stripe=137)
Planes



We conduct the same evaluation when the stripe countfigures 10. Once again EDO is able to maintain good and
changed to 137 with maximum of 512 readers. We shogonsistent performance.
peak performance in Figured(c) and 8(d). Adding more
OSTs help three data organizations improve their bandwid
Particularly, ORG delivers the best performance because of
good concurrency as shown in TaltlleEven so, EDO isable [~
to achieve performance close to ORG, without sophisticate@w e
user efforts in determining that 137 storage targets arienapt %gg B
for this combination of data size, writing process count and 7
data organization. Same cost of redundant read is observedg)ig :

Case X, which will be discussed in SectiowB. ol i 11 L
EDO ORG LC EDO ORG LC

(a) 36 Readers (b) 72 Readers
Fig. 11: Read Planes from Multiple Variables

- Planar Reads of Multiple Variables

In view of its consistent and balanced performance results
for all planes with different stripe counts, we believe EDO
can be used as a better data organization strategy, particul
beneficial in supporting user convenience and consisteart ne
optimal performance. Another common access pattern from scientific codes is to

read planes from multiple variables, for example, reading a
B. Performance of Intra-PG Ordering for Large Datasets slice of data from 9 variables out of 14 variables. The ratio

. . . .of writers to readers is normally 10:1 or 20: 1. To evaluate
As observed in the previous section, the problem of readi .
e performance of EDO for such patterns, we design a test

extra data becomes more pronounced when the array sizé o :
becomes larger. This happens to both ORG and EDO. Thiase that has 8 double precision 3-D arrays written by 720

on top of PG-level organization using Hilbert Curve, wi f0>< 6 x 12) processes. For each variable, a process writes a

. ; . 2x 36x 22 3-D array resulting in a global size of 26216x
apply subchunking for intra-PG ordering and then evalu 50. So the total data size is 765.7 MB. One plane is 4455
the performance for planar reads. ' ' ' '

KdB. We set the stripe count as 40 and the stripe size as 2 MB

a Orlé;:edsézl fg:‘:lijriboaﬂaﬁszeaéo:s)r d\?mifrg(r:gn:velahnivse Sﬁfhersveq that data created by one process is written to one OST.
9 P ' nly Hilbert curve is used for PG-level organization within

chunking, each PG is decomposed into up to 16 subchun
The main purpose of this approach is to further improve the

read performance dj andik planes. Thus, only the resultsout of 8 variables. 36 and 72 processes are used, respgctivel

for these planes are shown. In Figdesubchunking for intra . corresponding to 1/20 and 1/10 of the original 720 writetse T
PG ordering speeds up the read performance further. This Is -
. L esplts are shown in Figurel. LC has the best performance
because the finer the PG decomposition is, the less redundant. : )
. . or jk planes. But because of contention, adding more read
data will be read. Moreover, decomposing PGs reduces the . )
. . rocesses decreases the bandwidth. More seek operations
size of each request, which can be served faster by stor ggje

We evaluate the performance of reading 2-D planes from 5

i : . .again degrade the performance i&f and ij planes. ORG
devices. However, more seeks are involved with subchunkin hieves nearly the same performanceiloandik planes be-
Overall, we observe EDO with 8 subchunks delivers the y P 9 P

highest bandwidth, achieving an improvement as much qlause their data chunks spread to all 40 OSTs. The difference

times compared to EDO organization without subchunkin due to more extraneous data is retrievedikoplanes. The
(EDO-lsubS:hun)g and 22 timges compared to ORG I:urtheyzgerformance drops significantly faj planes, especially for

" . P : 72 processes. This is because such planes are only located on
decomposition of PG into 16 subchunks degrades the perfg&

mance due to more seek operations. It also can be attribnite OSTs, compared to the maximum of 35 OSTS using EDO.

. . . : ith 36 processes, the contention is not as severe as that of 7
contention at the storage side because of the increasingerum rocesses. thus relativelv hiaher bandwidth is observeD E
of small requests. Last but not least, the intra-PG ordewitiy P ' yhig

8 subchunks does not increase the time of data generation. E%rforms slightly lower than but comparable to ORG far

. . . .andik planes. This can be attributed to the difference between
the maximum of 1,024 writers , an increase of 6% to the wri % . .
time is observed e number of OSTs. Overall, EDO delivers consistent and

balanced read performance for all planes under both cases an
C. Scalability of Planar Reads with any choice of striping parameters.
We also examine the performance of planar reads with &n Read Performance of Subvolume

increasing number of writers. In this experiment, the numbe A subvolume is an orthogonal, rectangular cube within a
of readers is fixed to 512, while the data being read is writtenultidimensional variable. For these experiments, thellsma
by different number of processes ranging from 1,024 to 8,1%hd large data cases are examined using 128 storage targets
Thus the amount of data read by each process increaf@msall three data organizations. To represent an arbitrary
accordingly. Both Hilbert curve and subchunking are useslibvolume, a volume that containing one-eighth of the total
for EDO in this case. The results for Case X are shown thata size is read from the center of the logical simulation
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Fig. 10: Planar Performance with Scaling of Writers(Read812, stripe=128)

area. Each dimension of the subvolume is half of the maxinfal Impact to Data Generation

dimension size. Only Hilbert curve is used for PG-level 14 gyamine possible performance impact of EDO to write
organization within EDO. Figurd2 shows the experimental oherations, we evaluate its overhead in terms of time inergm

results. to data generation between ORG and EDO. Overall, a max-
imum of 5% overhead is observed among all the test cases.
Detailed results are not included. This test indicates HiD
2 R — 100 ——ic has negligible impact to the generation of multidimensiona
—— EDO / —>¢— EDO . . . g . .
7 15 THORG o \ —%— ORG| datasets in scientific applications.
e ¢ o
iy — EL/ 0\ V1. RELATED WORK
§ — 3 . . . L
e S u\_/* Improving the performance of data-intensive applications
o e ;\m G 5:2 ot has been an active research topic in various domains. laafste
Number of Readers Number of Readers et al evaluate and understand the performance of many of the
(a) Case S (b) Case L reading patterns for extreme scale science applicatio®f [2
Fig. 12: Subvolume Performance (writers=4096, stripe§z12Many approaches have explored data staging and caching to
subvolume size (S/L) = 31.25MB/3.81GB) either bring datea priori, or buffer data temporarily, respec-

tively, in anticipation of performance savings of futuretala

access. For example, staging has been exploited for gadeba

scientific computing [22], [7]. The staging approach addpte

In both cases, EDO is able to cover more OSTs thdar grid environments is quite different from what is applide

ORG, i.e. 128 and 64, respectively. 64 OSTs are enoughtto closely integrated systems such as supercomputers. The
serve up to 512 readers effectively. Thus we observe simiRreDatA [47] system creates a staging area in which data
performance between EDO and ORG, with EDO performingan be prepared through annotation, filtering, indexingl an
slightly better. Even though LC is able to use all OSTs in bottrganization, for efficient post-analysis. Zazen [42] nsake
cases, its performance suffers because reading a subvolumeensive use of more storage devices, and caches simulatio
requires more seek operations. Overall, EDO is able to geovidata as a series of small files across multiple disks of a
consistent and balanced read performance for planar reavstworked analysis cluster. In doing so, it improves thelrea
For cases like reading a subvolume where a dataset coyaeesformance of data analysis. However, neither PreDatA or
enough storage targets, EDO is able to achieve the peak r&aden examines the performance of data reordering stestegi
performance. for I/O performance improvements.



Many studies have investigated different data organiziem scientific multidimensional datasets. Multiple organ
tions for boosting I/0O performance. For example, log-basé¢idn strategies are supported as selectable algorithmdafiar
data organization is exploited for databases [15] and vadrdering at two different levels. The first level uses Hitber
ous file systems [39], [41], [44]. Sarawagi et al. [40] haveurve for distributing and ordering ADIOS data groups. By
categorized the strategies for efficient organization ofida using this strategy, data from scientific multidimensioasl
multidimensional arrays into four classes, namely chugkinrays can be distributed in a balanced manner across alggtora
reordering, redundancy, and partitioning. Fan et al. [18vices, so that the aggregated bandwidth can be effgctivel
proposed a latin cube strategy to put neighbor elements itggregated and exploited for challenging read accesspstte
one shared memory module to improve I/O performancearticularly planar reads. A subchunking strategy is atéimt
Because of the natural thinking of the disk traversal, thauced for data ordering at the intra-PG level, splitting ragda
logically contiguous format has been adopted by many pepuliata chunk into many small subchunks. This helps achieve a
I/O libraries including NetCDF versions 3 [32] and 4 [43]good tradeoff between the number of seeks and the amount
HDF5 [28], and PnetCDF [24]. Through the terascale era, tho$ read overhead for large data datasets. Together, EDO is
worked extremely well. In fact, HDF5 can achieve excellergtble to deliver consistent and balanced read performance
performance [46]. With the size and complexity of moderfor all types of planar reads from multidimensional arrays.
storage arrays, the read performance for 3-D arrays foantesiWe have mathematically validate the performance benefits
purposes does not measure up for the logically contiguoofs EDO on large-scale parallel file systems. We have also
format, compared to a log-based format [36]. Our work buildsxperimentally evaluated the performance of EDO using the
on these previous results by examining how SFC-based dasguar supercomputer at Oak Ridge National Laboratory. Our
organization on storage targets can improve the 1/O perfeesults demonstrate that EDO can improve the performance of
mance of a common analysis pattern, i.e., reading a planeptdnar reads by as much as 37 times.
different dimensions from multidimensional arrays. In the future, we plan to exploit more data ordering tech-

Space filling curves are widely used [3] because of theiiques to integrate into EDO for other access pattern such
good spatial locality properties, especially in spatiglbdase as multi-resolution arrays. We also plan to study the data
researches such as [38], [14]. Lawder et al. [23] have eggdlororganization strategies on the other file systems that do not
different kinds of space filling curves to develop indexingupport changing the stripe parameters on the fly such as
schemes for data layout and fast retrieval in multidimemsio GPFS.
databases. Pascucci and Frank [35] have used a globalmgdexi
scheme to reorder regular grids based on Lebesgue’s space REFERENCES
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