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EXPERIMENTAL MEASUREMENTS OF SHOCK PROPERTIES OF STISHOVITE
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We have synthesized, characterized and performed Hugoniot measurements on monolithic samples of stishovite.
Synthesis was accomplished in a multianvil press with pyrophyllite gaskets and carbon heaters. The samples had
densities ranging from 3.80 to 4.07, corresponding to stishovite volume fractions of 0.7 to 0.87, a range confirmed
by NMR analysis. They had no significant impurities except less than 1% carbon. Samples ~1 mm thick and 3 mm
diameter were tested in reverse- and forward-ballistics modes on a two-stage light gas gun, using velocity
interferometry diagnostics. Impact velocities ranged from 4.0 to 6.5 km/sec. Hugoniot stresses for the four
successful tests ranged from 65 to 225GPa. At higher stresses significant uncertainties arise due to impact tilt/

nonplanariy issues. Results are consistent with earli
centered Hugoniot data, static-compression (diamond-
behavior appears to be frozen. These results are remark

BACKGROUND

Stishovite is a dense, high pressure polymorph of
silica (Si0,). It has an ambient density of 4.3 Mg/m3,

is stable at stress above 7.5 GPa at room temperature,
and is composed of a structure in which the silicon at-
oms are each surrounded by six oxygen atoms in an
octahedral arrangement.

A high-pressure phase of quartz observed by
Wackerle! in shock wave experiments was identified
as stishovite by McQueen et al.2 on the basis of its ob-
served transition pressure (~14 GPa) and density. Mc-
Queen et al 2 derived a Griineisen ratio of V(3P/dE),
=7 =0.9, a heat of formation relative to quartz of 1.5
x 1010 erg/gm, and a bulk sound speed of 10 km/sec
for stishovite. This large heat of formation indicates
why stishovite is so rarely found in nature under at-
mospheric conditions (found primarily at recent im-
pact sites such as Meteor Crater, Arizona).

Grady et al.3 performed a set of experiments on
shocked quartz using manganin gauges to measure
stress histories, obtaining release information as well
as Hugoniot states. Results from that study are shown
in Figure 1, together with Hugoniots from other
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er predictions of the stishovite Hugoniot based on quartz-
anvil cell) data and hydrostatic multianvil cell data. Release
able in view of the small size of the samples used.

sources as noted. Interestingly, that and subsequent
studies (e.g. Chhabildas and Millers) showed that re-
leases are “frozen” down to about 8 GPa, then a tran-
sition to a lower-density phase occurs.
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FIGURE 1. Summary of earlier experimental and theoretical
studies. Curve “A™ is centered at pg = 4.3 gm/em® (Vg = 0233
cm’/gm); “B” at 2.65 gm/em® (Vo =0.377 cm/gm) (McQueen et
a1?); “C” at 4.0 gmlcm?® (Vg = 0.25 cm’/gm); and “D” at 3.7 gm/
om® (Vp=027 cm3/gm) (Anderson and Kanamori4).
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Prior to the present study, no shock compression
studies using stishovite samples had been performed.
The goal of the present study is to measure the Hugo-
niot of silica beginning with stishovite samples (initial
densities of 3.8 - 4.2 Mg/m3). This is interesting for
two reasons. First, the thermal regimes exercised are
quite different than for a Hugoniot centered on quartz.
Second, the starting material is known to be stishovite
in the present experiments.

SAMPLE PREPARATION
AND CHARACTERIZATION

Samples of monolithic, polycrystaliine stishovite
(actually, a mixture of SiO, polymorphs) were pre-
pared in the laboratory of Hideyuki Fujisawa of the
University of Tokyo. A multianvil press, with tung-
sten carbide anvils, pyrophyllite gasket and graphite
heaters, was used. The starting material was an acti-
vated silica (a gel). The sample was held at 1100 °C
and 10 GPa for slightly over an hour, with a slow
cool-down. Two samples were prepared this way; one
was recovered whole, while the other was recovered
in six disks (apparently fractured during the cooling/
depressurization phase). The samples were about 3
mm diameter and 8 mm long. From this, samples
about 1 mm thick and 3 mm diameter were obtained,
and are shown in Figure 2.
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FIGURE 2. Stishovite samples used for present tests. Sample 4
was used for the successful reverse-ballistic test (ST-2); samples
11 - 13 were used for the successful forward-ballistic tests (ST-
11, 12, 13, respectively).

The samples were characterized by various meth-
ods, including visual examination, X-ray fluores-
cence, density measurements, NMR, electron micro-
probe, x-ray imagery, ultrasonic measurements of
sound velocities, and ultrasonic microscopy. The ma-
terial studied appears to have a mass fraction of 80 -
91% stishovite (balance quartz/coesite). Electron mi-
croprobe and X-ray fluorescence characterizations
showed minor carbon contamination (<1%), with no
other significant impurities.

IMPACT EXPERIMENTS CONDUCTED

Although a total of 14 tests were performed (8 with
stishovite samples), only 4 tests were found to provide
useful data on stishovite. Three utilized a transmitted-
save (forward-ballistic) configuration (Figure 3),
while the fourth utilized a reverse-ballistic configura-
tion (Figure 4). Selected parameters for these tests are
shown in Table 1.
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FIGURE 3. Forward-ballistic configuration.
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FIGURE 4. Configuration of reverse-ballistic stishovite tests

The primary difficulties for the forward-ballistic
tests lay in obtaining a precise (2-3 ns) transit time,
done by a careful time correlation of the two VISAR
signals. The reverse-ballistic tests proved to be unre-
liable in delivering the sample to the proper point on
the target, and in turn generating acceptable wave-
forms for both velocity interferometers.

TABLE 1. Test matrix
Test ST2* ST11 STi2 STI3
Projectile. Vel. (km/s) 401 4.88 498 6.54
Impactor Material - Al Ta Ta
Impactor Thickness (mm) —~ 2995 1.030 0.779
Sample measurements -
Thickness (mm) 0.859 0.931 0.978 0.977
Diameter (mm) 240 3.600 3.700 3.872
Density Mg/m?) 4.067 3.959 3.954 3.833

*Reverse-ballistic test; sample backed by 160 jum epoxy.

RESULTS

Hugoniot results for the four successful tests are
summarized in Table 2, and plotted in Figures 5 and 6.
The results from the two methods seem to be mutually
consistent, and are in substantial agreement with ear-
lier quartz-centered Hugoniot data and with theoreti-
cal predictions. The primary source of uncertainty for
the forward-ballistic tests is the tilt of the projectile.

The diamond-cell data® probably slightly underes-
timate density because of the axial X-ray diffraction

TABLE 2. Stishovite Hugoniot states*

Test# — ST2 ST11 ST12 STi3
Strain 0.16(4) 0.24(3) 0.34(4) 0.33(10)

po(Mgim®)  4.07(30) 3.96(10) 3.95(10) 3.83(10)
Particle Vel (k/s) 1.50(12) 2.06(9) 3.44(8) 4.36(25)
Stress (GPa) 594)  69(3) 136(9) 223(36)
p (Mg/m?) 48(5) 5203) 6.04) 5.7(1.1)
Shock Vel. (k/s) 9.6(1.4)  8.5(7) 10.009) 13.4(2.7)
p/po 1.19(5) 1.32(6) 1.52(10) 1.48(28)
V @¥Mg)  0207(19) 0.191(9)0.166(11) 0.176(28)

*Figures in parentheses represent uncertainties
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FIGURE 5. Present Hugoniot measurements compared with

Fig. 1 curves. Small circles represent an aggregate of preyious
experiments centered on quart; disks are diamond cell data
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FIGURE 6. Hugoniot and release properties of stishovite, compared with representative rock Hugoniot data and stishovite diamond-cell data.

method used, while the isothermal cubic-anvil static : ACKNOWLEDGEMENTS
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theoretical Hugoniots and frozen-phase release isen-
tropes in Figure 5. The corresponding waveform
match is shown in Figure 7 (WONDY V with custom
hysteresis model). Other calculated paths in Figure 7
show that the release inferred from this method is not
seriously affected by edge effects.
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