

DOE/OR/21400-7490

C/ORNL 90 0036

ornl

**OAK RIDGE
NATIONAL
LABORATORY**

MARTIN MARIETTA

CRADA Final Report

for

CRADA Number ORNL90-0036

COMPARISON OF PROPERTIES OF SINTERED AND
SINTERED REACTION-BONDED SILICON NITRIDE
FABRICATED BY MICROWAVE AND CONVENTIONAL
HEATING

T. N. Tiegs, J. O. Kiggans, Jr., and H. T. Lin
Oak Ridge National Laboratory

C. A. Willkens
Norton Company

Approved for Public release;
distribution is unlimited.

MANAGED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED ✓/✓

DOE/CRADA
21400-7490

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

C/ORN L-90-0036

MARTIN MARIETTA ENERGY SYSTEMS, INC.

POST OFFICE BOX 2009
OAK RIDGE, TENNESSEE 37831

December 8, 1994

Mr. Peter D. Dayton
Director, Procurement and Contracts
Department of Energy, Oak Ridge Operations
Post Office Box 2001
Oak Ridge, Tennessee 37831-2001

Dear Mr. Dayton:

Final Report for CRADA No. ORNL90-0036 with Norton Company

The subject CRADA has been completed and enclosed is the Final Report for this project.

This report does not contain proprietary information or Protected CRADA Information.
Neither Energy Systems nor the participant object to public distribution of this report.

If you have any questions, please feel free to contact me.

Very truly yours,

for Brian Bovee
Business Manager
Office of Technology Transfer

BBB:cav

Enclosure - As Stated.

cc: File - RC

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

COMPARISON OF PROPERTIES OF SINTERED AND SINTERED REACTION-BONDED SILICON NITRIDE FABRICATED BY MICROWAVE AND CONVENTIONAL HEATING

TERRY N. TIEGS*, JAMES O. KIGGANS, JR.*, H. T. LIN* AND CRAIG A. WILLKENS**

*Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6087

**St. Gobain/Norton Industrial Ceramics, Goddard Rd., Northboro, MA 01532-1545

ABSTRACT

A comparison of microwave and conventional processing of silicon nitride-based ceramics was performed to identify any differences between the two, such as improved fabrication parameters or increased mechanical properties. Two areas of thermal processing were examined: (1) sintered silicon nitride (SSN) and (2) sintered reaction-bonded silicon nitride (SRBSN). The SSN powder compacts showed improved densification and enhanced grain growth. SRBSN materials were fabricated in the microwave with a one-step process using cost-effective raw materials. The SRBSN materials had properties appropriate for structural applications. Observed increases in fracture toughness for the microwave processed SRBSN materials were attributable to enhanced elongated grain growth.

INTRODUCTION

Silicon nitride-based materials are currently the focus of considerable research for potential high-temperature structural ceramics because of their overall combination of mechanical and physical properties.¹ These materials are of interest in numerous applications for such diverse items as cutting tools, rotors and stator vanes for advanced gas turbines, valves and cam roller followers for gasoline and diesel engines, and radomes on missiles to name a few. Because of the broad interest, a considerable database has been generated over the years in processing and fabrication of silicon nitride ceramics.

In particular, microwave processing of silicon nitride has been the topic of several previous studies.²⁻¹³ In these studies, improved densification during sintering, accelerated nitridation of silicon, improved high-temperature mechanical properties with thermal annealing of dense materials, and one-step processing of SRBSN have been reported. In the present paper, microwave thermal processing was compared to conventional heating for fabrication of silicon nitride parts. The advantages and/or disadvantages of the processes were assessed in terms of improved mechanical properties or improvements in fabrication parameters. Two main areas of silicon nitride processing were examined: (1) sintering of powder compacts; and (2) fabrication of sintered reaction-bonded silicon nitride (SRBSN).

EXPERIMENTAL PROCEDURES

Three types of samples were examined in the present study: (1) sintered silicon nitride powder compacts fabricated by St. Gobain/Norton Industrial Ceramics (SG/NIC), (2) sintered reaction-bonded silicon nitride (SRBSN) powder compacts fabricated by SG/NIC, and (3) SRBSN powder compacts fabricated by Oak Ridge National Laboratory (ORNL). The SSN (and SRBSN) powder compacts fabricated by SG/NIC consisted of silicon nitride (or silicon) powders and proprietary sintering aids at either high or low additive contents. The starting materials for the SRBSN fabricated by ORNL consisted of appropriate amounts of silicon, α -Si₃N₄, Al₂O₃, and Y₂O₃ with the final composition after nitridation and sintering estimated to be Si₃N₄ - 9 wt. % Y₂O₃ - 3 wt. % Al₂O₃. Details of the powder processing of these types of materials have been reported previously.^{3-6,11-13} The SRBSN samples from ORNL were pre-sintered in argon at 1200°C for 1 hour. The samples were about 13 mm thick at this point with densities of 58-62% of theoretical density (T. D.).

All microwave processing of the samples was conducted in a 500 L cylindrical microwave cavity operating at 2.45 GHz. The samples were packed in Si₃N₄ powder containing 4% Y₂O₃ and 4% SiC, inside of a 15 cm x 15 cm x 12.5 cm alumina fiberboard box. A molybdenum

sheathed thermocouple with a boron nitride sleeve was inserted between two samples to measure the temperature. BN heat distributors were used to minimize local hot spots in the samples. Nitridation was performed with N₂-4 % H₂-5 % He at ~0.1 MPa (16 psi) with additional N₂ added as the reaction proceeded. After nitridation, the materials were heated to the sintering temperature and maintained for the appropriate time. An entire heating cycle to 1800-1825°C required approximately 27 h. The SSN tiles were fired in a similar manner in the microwave, but bypassed the nitridation step and were heated directly to the sintering temperature in nitrogen. Further details on the processing can be found in earlier references.¹¹⁻¹³

The conventional processing for the SRBSN samples fabricated by ORNL was carried out in conventional resistance heated furnaces in a two-step process consisting of nitridation in one furnace followed by a high temperature sintering step in a different furnace. The SSN tiles were fired in a similar manner in the graphite furnace, but bypassed the nitridation step and were heated directly to the sintering temperature in nitrogen. The conventionally heated samples fabricated by SG/NIC were processed in a similar fashion.

Densities were determined by the Archimedes method. Samples were machined into bend bar specimens with nominal dimensions of 3 mm x 4 mm x 50 mm. Flexural strength testing was done in four point bending with inner and outer spans of 20 mm and 40 mm, respectively. Fracture toughness and hardness were determined by an indentation/fracture method using a 10 kg load. For the SRBSN samples fabricated by ORNL, flexural creep tests at 1200°C were performed on bend bar specimens in a fixture with same dimensions as the flexural strength testing.

RESULTS

The results on the densification, flexural strength and fracture toughness are summarized in Table 1. Several differences between the microwave and conventional processed materials were observed.

The densities of the microwave processed materials were higher than the conventional samples for the silicon nitrides with high additive contents. However, the opposite was true for the samples containing low additive contents. This difference is attributable to the coupling effect inherent in the silicon nitrides. Pure Si₃N₄ is relatively transparent to microwaves and has low absorption. Silicon nitride-based materials heat in a microwave field by coupling of the energy to the sintering additives or grain boundary phases that are normally present.^{14,15} When the secondary phases are minor components, the silicon nitrides will generally have low dielectric loss properties and are difficult to heat. This difficulty translates into lower densities for the samples having low additive contents.

The mechanical properties, also given in Table 1, show that the microwave processed materials exhibit significantly improved fracture toughnesses compared to the conventionally heated samples. The improvement in fracture toughness values for the microwave materials is a result of the increased elongated grain growth observed in these samples as shown in Fig. 1. The samples containing the high additive levels showed generally higher fracture toughnesses and larger differences between the microwave and conventional samples. This is because of the larger amounts of liquid phase present in the samples with high additive contents, which facilitates the elongated grain growth associated with silicon nitride. It is also related to microwave coupling effect where the higher additive contents lead to increased heating efficiency of the samples.

Comparison of the mechanical properties also shows that, with the exception of the SSN samples with low additive content, the microwave processed materials also exhibited higher flexural strengths. In general, strength is related to the density of the material. Thus, the low strength for the SSN samples with low additive content is due to the lower densification. In situations where the densities are the same, increases in the fracture toughness reduce the sensitivity to flaws and higher strengths are typically observed. Thus, for the microwave samples, where the densities

are comparable to the conventional samples, the higher strengths are attributable to the improvement in fracture toughness.

The flexural creep results at 1200°C for the SRBSN samples fabricated by ORNL indicate that the microwave-processed material exhibits better creep resistance than the conventional heated materials. The threshold stress above which the microwave material exhibits a high creep rate (and short creep life) is ~ 175 MPa, whereas the threshold stress for conventional materials is ~ 100 MPa. At stress levels between 100 and 175 MPa, the microwave samples exhibit creep rates that are approximately two-order of magnitude lower than the conventional samples. The difference in the creep resistance under the test conditions employed between microwave and conventional SRBSN materials may arise from the differences in elongated grain microstructure. The microwave material has a microstructure that exhibits a larger number density of highly developed elongated grains than that developed in the conventional material (Fig. 2). This is again associated by its higher toughness and strength as compared with conventional SRBSN.

CONCLUSIONS

For SSN and SRBSN materials, densification was dependent on the additive content. At high additive levels, the microwave coupling efficiency is increased resulting in higher densities compared to conventional heating. Thus, microwave sintering appears to be more appropriate for silicon nitride compositions at high additive levels.

The mechanical properties were generally higher for the microwave processed silicon nitrides. In particular, the fracture toughness was significantly improved over the conventional heated materials. This was attributed to enhanced elongated grain growth in the microwave processed samples.

Table 1. Summary of results on microwave and conventional sintering of silicon nitride.

Sample Number / Type	Sintering Aid Content	Processing Type	Sintered Density (g/cm ³)	Flexural Strength (MPa)	Fracture Toughness (K _{IC} , MPa ^{1/2} m)
9054 / SSN ^a	Low	Microwave	3.02	599±18	5.3±0.2
9054 / SSN ^a	Low	Conventional	3.22	638±23	5.0
9059 / SSN ^a	High	Microwave	3.33	925±51	8.8±0.4
9059 / SSN ^a	High	Conventional	3.32	834±85	7.7±0.4
9032 / SRBSN ^a	Low	Microwave	3.22	808±130	7.4±0.1
9032 / SRBSN ^a	Low	Conventional	3.26	804±51	7.0±0.1
9033 / SRBSN ^a	High	Microwave	3.31	876±33	7.3±0.1
9033 / SRBSN ^a	High	Conventional	3.26	694±44	6.5±0.1
TM145X/SRBSN ^b	9Y3A*	Microwave	3.30	744	7.1±0.2
TM145Z/SRBSN ^b	9Y3A*	Conventional	3.25	601	5.0±0.3

^aFabricated by SG/NIC. ^bFabricated by ORNL. * 9 wt. % Y₂O₃ - 3 wt. % Al₂O₃

ACKNOWLEDGMENTS

The work was done under a Cooperative Research and Development Agreement (CRADA). For the work done at Oak Ridge National Laboratory, the research was sponsored by the U.S.

Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the Ceramic Technology Project of the Materials Development Program, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. The work done by St. Gobain/Norton Industrial Ceramics was supported by internal research and development funds.

REFERENCES

1. R. N. Katz, Nitrogen Ceramics 1976-1981, pp. 3-20 in *Progress in Nitrogen Ceramics*, ed. F. L. Riley, Martinus Nijhoff Pub., The Hague, Netherlands (1983).
2. T. N. Tiegs, J. O. Kiggans, and H. D. Kimrey, "Microwave Processing of Silicon Nitride," pp. 267-272 in *Microwave Processing of Materials-II*, Vol. 189, ed. by W.B. Snyder, W.H. Sutton, D.L. Johnson, and M.F. Iskander, Materials Research Soc., Pittsburgh, PA 1991.
3. T. N. Tiegs and J. O. Kiggans, and H. D. Kimrey, "Microwave Sintering of Silicon Nitride," *Ceram. Eng. Sci. Proc.*, 12[9-10] 1981-1992 (1991).
4. J. O. Kiggans and T. N. Tiegs, "Characterization of Sintered Reaction Bonded Silicon Nitride Processed By Microwave Heating," pp. 285-290 in *Microwave Processing of Materials-III*, Vol. 269, ed. by R. L. Beatty, W.H. Sutton, and M.F. Iskander Materials Research Soc., Pittsburgh, PA 1992.
5. J. O. Kiggans, C. R. Hubbard, R. R. Steele, H. D. Kimrey, C. E. Holcombe, and T. N. Tiegs, "Characterization of Silicon Nitride Synthesized By Microwave Heating," pp.403-410 in *Ceramic Transactions, Microwaves: Theory and Application in Materials Processing*, ed. D.E. Clark, F.D. Gac, and W.H. Sutton, American Ceramic Society, Westerville, OH, 1988.
6. T. N. Tiegs, Ferber, M.K., Kiggans, J.O., More, K.L., Hubbard, C.M., and Coffey, D.W., "Microstructure Development During Microwave Annealing of Dense Silicon Nitride," pp.411-420 in *Ceramic Transactions, Microwaves: Theory and Application in Materials Processing*, ed. D.E. Clark, F.D. Gac, and W.H. Sutton, American Ceramic Society, Westerville, OH, 1988.
7. T. N. Tiegs and J. O. Kiggans, "Fabrication of Silicon Nitride Ceramics by Microwave Heating," pp. 665-671 in *Proc. 4th International Symp. Ceram. Mater. & Compon. for Engines*, Elsevier Applied Sci., New York (1992).
8. M. L. C. Patterson, P. S. Ape, R. M. Kimber, and R. Roy, "Batch Process For Microwave Sintering of Silicon Nitride," pp. 291-300 in *Microwave Processing of Materials-III*, Vol. 269, ed. by R. L. Beatty, W.H. Sutton, and M.F. Iskander Materials Research Soc., Pittsburgh, PA 1992.
9. M. L. C. Patterson, P. S. Ape, R. M. Kimber, and R. Roy, "Mechanical and Physical Properties of Microwave Sintered Si_3N_4 ," pp. 301-310 in *Microwave Processing of Materials-III*, Vol. 269, ed. by R. L. Beatty, W.H. Sutton, and M.F. Iskander, Materials Research Soc., Pittsburgh, PA 1992.
10. J. Zhang, L. Cao, and F. Xia, "Microwave Sintering of Si_3N_4 ," pp. 329-334 in *Microwave Processing of Materials-III*, Vol. 269, ed. by R. L. Beatty, W.H. Sutton, and M.F. Iskander Materials Research Soc., Pittsburgh, PA 1992.
11. T. N. Tiegs, J. O. Kiggans, and K. L. Ploetz, "Cost-Effective Sintered Reaction-Bonded Silicon Nitride for Structural Ceramics" *Ceram. Eng. Sci. Proc.*, 14[1-2] 378-388 (1993).
12. T. N. Tiegs, J. O. Kiggans, and K. L. Ploetz, "Sintered Reaction-Bonded Silicon Nitride By Microwave Heating" pp. 283-288 in *Materials Research Society Proceedings*, Vol 287.
13. J. O. Kiggans, T. N. Tiegs, H. D. Kimrey and C. E. Holcombe, "Processing of Complex Sintered Reaction Bonded Silicon Nitride Parts by Microwave Heating," pp. 269-276 in *Ceramic Transactions, Microwaves: Theory and Application in Materials Processing II*, Am. Ceram. Soc., Westerville, OH (1993).
14. D. R. Clarke and Ho, W.W., "Effect of Intergranular Phases on the High-Frequency Dielectric Losses of Silicon Nitride Ceramics." In *Additives and Interfaces in Electronic Ceramics, Advances in Ceramics*, Vol. 7, ed. M.F. Yan and A.H. Heuer, Amer. Ceram. Soc., Westerville, OH, 1983, pp. 246-252.
15. H. Ohno and Katano, Y., "Electrical Properties of Silicon Nitride." In *Mater. Sci. Forum*, Vol. 47, 1989, pp. 215-227.

Fig. 1. Polished and etched microstructures of SRBSN materials processed by (a) microwave (TM145X) and (b) conventional heating (TM145Z).

Fig. 2. Flexural creep results at 1200°C of SRBSN materials processed by microwave (TM145X) and conventional heating (TM145Z).