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Why Develop a Fluid Reduced Order
Model (ROM)?

FD modeling of unsteady
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Why Develop a Fluid Reduced Order
Model (ROM)?

CFD modeling of unsteady
3D flows is expensive!

A Reduced Order Model (ROM) is a surrogate
numerical model that aims to capture the essential
dynamics of a full model but with far fewer dofs.

Applications in Fluid Dynamics:
@ Predictive modeling across a parameter space
(e.g., aeroelastic flutter analysis).
@ System modeling for active flow control.

@ Long-time unsteady flow analysis, e.g., fatigue of a
wind turbine blade under variable wind conditions.




Motivation for Numerical Analysis of
ROMs

Use of ROMs in predictive applications raises
questions about their stability & convergence.

@ Projection ROM approach is an alternative discretization of the
governing PDEs.

@ Desired numerical properties of a ROM discretization:

» Consistency (with continuous PDEs):
> Stability:

» Convergence: requires consistency and stability.
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Motivation for Numerical Analysis of
ROMs

Use of ROMs in predictive applications raises
questions about their stability & convergence.

@ Projection ROM approach is an alternative discretization of the
governing PDEs.

@ Desired numerical properties of a ROM discretization:
» Consistency (with continuous PDEs): loosely speaking, a ROM CAN be
consistent with respect to the full simulations used to generate it.
» Stability: numerical stability is NOT in general guaranteed a priori for a
ROM!
» Convergence: requires consistency and stability.

This talk focuses on how to construct
a Galerkin ROM that is stable a priori
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POD/Galerkin Approach to Model Reduction
© Numerical Stability

e A Stable ROM for the Linearized Compressible Euler Equations
@ Symmetrized Equations and Energy Stability
@ Numerical Studies

e A Stable ROM for the Full Compressible Navier-Stokes Equations
@ Symmetrized Equations and Entropy Stability
@ Interpolation of Non-Linear Terms
@ Preliminary Numerical Studies

utline

e Summary & Future Work
@ References

0 Appendix
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Model Reduction Approach

High-Fidelity
CFD Simulations: Fluid Modal
Decomposition ) -
. Galerkin Projection
Snapshot 1 Step 1 (POD): Step 2 of Fluid PDESs:
Snapshot 2 >
A (¢5,00m + V- F(unm)) =0
. un = Y ak(t)er(x)
. k=1
Snapshot K
“Small”
ROM
ODE
System:
ax = f(a,...,an)
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Step 1: Constructing the Modes

High-Fidelity
CFD Simulations: Fluid Modal
Decomposition
Snhapshot 1 Step 1 (POD):
Snapshot 2

Snapshot K

M
un = Y aw(t)ei(x)
k=1

@ POD basis {¢;}M, with M << K
maximizes the energy in the projection
of snapshots onto span{¢; }.

@ POD eigenvalue problem:

Ro = \o

where R¢ = (u®(u*, ¢)).
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Step 2: Galerkin Projection

Galerkin Projection
Step 2 of Fluid PDEs:

(¢j,um + V- F(up)) =0

@ Galerkin projection of
continuous equations in
continuous inner product

“Small” ontg r&duced basis modes
ROM {o:dizq-
ODE
System:
ap = f(a1,...,an)
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' Stability Definitions

@ Practical Definition: Numerical solution does not “blow up” in finite time.
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i Stability Definitions

@ Practical Definition: Numerical solution does not “blow up” in finite time.

@ More Precise Definition: Numerical discretization does not introduce any
spurious instabilities inconsistent with natural instability modes supported by the
governing continuous PDEs.

Numerical solutions must obey conservation laws
satisfied by solutions of continuous equations

Compressible Navier-

Linearized Compressible . .
Euler Equations: . SELCR [ LRI
4B < «—— duality — L [ pnd >0
di. = Clausius-Duhem Inequality

Non-increasing energy Non-decreasing entropy
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i Stability Definitions

@ Practical Definition: Numerical solution does not “blow up” in finite time.

@ More Precise Definition: Numerical discretization does not introduce any
spurious instabilities inconsistent with natural instability modes supported by the
governing continuous PDEs.

Numerical solutions must obey conservation laws
satisfied by solutions of continuous equations

Linearized Compressible S OIS
P Stokes Equations:
Euler Equations:

4B < «—— duality — .% fﬂ pnd$2 >0 .
Non-incr‘gas_in ener Clausius-Duhem Inequality
9 9y Non-decreasing entropy

@ Analyzed using the Energy Method: Uses an equation for the evolution of

numerical solution “energy” (or “entropy”) to determine stability. i%g&m

8/27



~ 'SD Linearized Compressible Euler
Equations

@ Useful for aero-elasticity, aero-acoustics, flow instability analysis.

@ Linearization of full compressible Euler equations:
d(xt)=(wm w us ¢ p)=q (x)+q"(xt) R’
N N——

mean fluctuation

=q;+Aiq;+Cq =0

where

a0 0 0 ¢ iy 0 0 0 0
0 U 0 0 0 0 Usg 0 0 ¢
A, = 0 0 @ 0 0 |, Ay=| 0 0 @ 0 0
—C 0 0 Uy 0 0 —C 0 Uz 0
4 0 0 0 @ 0 ~4p 0 0 a

ug 0 0 0 0 i1,1 Oui2 U1,3 P 0

0 a3 0 0 0 U1 U2,2 U3 P2 0

A; = 0 0 u3 0 ¢ , C= u3,1 u3,2 u3,3 P,3 0

0 0 —-¢ uz O [ (2 (3 —V-u 0

0 0 ~vp 0 a3 P1 D2 D3 0 vV

u-ﬂ lnburmlms
9/27



Symmetrized Compressible Euler
Equations & Symmetry Inner Product

Energy stability of the Galerkin ROM can be proven™ following
a “symmetrization” of the linearized compressible Euler equations.

@ Linearized hyperbolic compressible Euler system is “symmetrizable”.
@ Pre-multiply equations by symmetric positive definite matrix:

5 0 0 0 0
0 5 0 0 0

H=| 0 0 5 0 0 = |Hq; + HA; d’; + HCq' =0
0 0 0 S
0 0 0

o?yp°p ﬁa22
ﬁO‘Q HT; /

@ H is called the “symmetrizer” of the system: HA; are all symmetric.
@ Define the “symmetry” inner product and “symmetry” norm:

@V, d)m0) = / AV HGPdQ,  ||d || = (dd)@e)
Q

*M.F. Barone, D.J. Segalman, H. Thornquist, I. Kalashnikova. “Galerkin Reduced Order Models for Compressible Flow San_dﬂ |
with Structural Interaction”. AIAA Paper No. 2008-0612, 46th AIAA Aerospace Science Meeting and Exhibit, Reno, NV Laboratories
(Jan. 2008); [2-4].
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l A Stable Galerkin ROM

Stability analysis dictates that we use the symmetry inner product to compute the
POD modes and perform the Galerkin projection.
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' A Stable Galerkin ROM

Stability analysis dictates that we use the symmetry inner product to compute the
POD modes and perform the Galerkin projection.

@ Energy estimate: || (x, t)||e1,0) < €”[|qhs (x,0)[| (1,0

Practical Implication:
Symmetry inner product ensures Galerkin projection
step of the ROM is stable for any basis!

@ Stability-Preserving Discrete Implementation:
» Define snapshots and POD modes using piecewise smooth finite elements.
» Apply Gauss quadrature rules of sufficient accuracy to compute exactly

inner products.
» Fairly general, works for any nodal mesh that can be represented using

finite elements.
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i A Stable Galerkin ROM

Stability analysis dictates that we use the symmetry inner product to compute the
POD modes and perform the Galerkin projection.

@ Energy estimate: ||q), (%, t)||(m,0) < %t | (x, 0] (m1,02)-

Practical Implication:
Symmetry inner product ensures Galerkin projection
step of the ROM is stable for any basis!

@ Stability-Preserving Discrete Implementation:
» Define snapshots and POD modes using piecewise smooth finite elements.
» Apply Gauss quadrature rules of sufficient accuracy to compute exactly
inner products.
» Fairly general, works for any nodal mesh that can be represented using
finite elements.

A computer code was written that reads in the snapshot data written
by AERO-F*, assembles the necessary finite element representation
of the snapshots, computes the numerical quadrature for evaluation

of the inner products, and projects the equations onto the modes. :
itional
U= Laboratories
* AERO-F is an arbitrary Lagrangian—Eulerian code that can be used for high-fidelity aeroelastic analysis (Lieu, Farhat et af.).
11/27



g 'Numerical Study 1: Purely Random
—3 Basis

First Mode

e e e e

-0.54

Maximum Real Part of ODE Eigenvalues
%
»
.
»
»
»
»

3 4 s 6
Number of Modes

@ Uniform base flow: physically stable to any linear disturbance.

@ Each mode is a random disturbance field that decays to 0 at the domain
boundaries.

@ Model problem for modes dominated by numerical error: extreme case of “bad”
modes.
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Numerical Study 1: Purely Random

B 1
First Mode 8
e © L2 Inner Product
g 4 Symmetry Inner Product
B, Q8 | e R R R ST R R
: .o
=) . i
S . 0
g o a * a - a a
5
A
3
&
E -0.54
£
=
B
=
-1
1 2 3 4 s 6 7 8
Number of Modes

@ Uniform base flow: physically stable to any linear disturbance.

@ Each mode is a random disturbance field that decays to 0 at the domain
boundaries.

@ Model problem for modes dominated by numerical error: extreme case of “bad”
modes.

@ To test a posteriori the stability of a ROM dynamical system a,; = Kays, check
he L ition: Sandia
the Lyapunov condition maxi R{A(K)} < 07 @ Rt

12/27
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Numerical Study 2: 2D Pressure Pulse

@ Reflection of cylindrical Gaussian pressure pulse in
uniform base flow, M., = 0.25.
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i Numerical Study 2: 2D Pressure Pulse

@ Reflection of cylindrical Gaussian pressure pulse in
uniform base flow, M., = 0.25.

@ Good qualitative agreement between CFD solution and 6
mode symmetry ROM (with BCs) on large scale.

@ Excellent agreement between CFD solution and 14 mode
symmetry ROM (with BCs).

@ Symmetry ROM (with BCs) is stable — vs. L? ROM, which
experienced instability when more than 6 or 7 modes were
used.
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i Numerical Study 2: 2D Pressure Pulse

Reflection of cylindrical Gaussian pressure pulse in
uniform base flow, M., = 0.25.

Good qualitative agreement between CFD solution and 6
mode symmetry ROM (with BCs) on large scale.

Excellent agreement between CFD solution and 14 mode
symmetry ROM (with BCs).

Symmetry ROM (with BCs) is stable — vs. L ROM, which
experienced instability when more than 6 or 7 modes were rou
used.

Symmetry ROM with BCs is convergent (a priori [2] and a
posteriori).

]

Average Ei

[
S|

5 9 W u 12 1 1
Number of Modes, M
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CFD 6 mode ROM 14 mode ROM
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> 'Full 3D Compressible Navier-Stokes
Equations

@ Required to describe satisfactorily compressible flows at transonic, supersonic
and hypersonic Mach numbers where non-linear effects are significant.

@ High accuracy simulations (DNS, LES) are required to capture correctly viscous
and nonlinear effects (e.g., boundary layers, shocks, turbulence).

@ Full compressible Navier-Stokes equations in the conservation variables:

U'(x,t)=(p pur puz pus pe )ER’

=>U,+ AU, - (Ki;U;),: =0

where
F;;=F;uU;=A;U;, F; =K/;U ;, F} = K?jU i
_ v h
Kij = Kij =+ Kij'
with
0 0 0
614 T1i , 0
F,=u;U+p 24 s Fr = T2 s F; = 0 s
63i T3i 0

Wi Tij Ui % Sandia
@ National
Euler flux viscous flux heat flux Lahoratories
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- Entropy Variables & Entropy Stability
Entropy stability of the Galerkin ROM can be proven following
a “symmetrization” of the compressible Navier-Stokes equations.

@ Parabolic-hyperbolic compressible Navier-Stokes system is “symmetrizable”.

Theorem (Mock) [6]

A parabolic-hyperbolic system of conservation laws possesses a (convex)
generalized entropy function H(U) and becomes symmetric under the change of
variables

Vi=Hy

Sandia
@ National
Laboratories

15/27



' Entropy Variables & Entropy Stability

Entropy stability of the Galerkin ROM can be proven following
a “symmetrization” of the compressible Navier-Stokes equations.

@ Parabolic-hyperbolic compressible Navier-Stokes system is “symmetrizable”.

Theorem (Mock) [6]

A parabolic-hyperbolic system of conservation laws possesses a (convex)
generalized entropy function H(U) and becomes symmetric under the change of
variables

Vi=Hy

The variables V are known as the entropy variables.

Sandia
W=
Laboratories

15/27




i Entropy Variables & Entropy Stability

Entropy stability of the Galerkin ROM can be proven following
a “symmetrization” of the compressible Navier-Stokes equations.

@ Parabolic-hyperbolic compressible Navier-Stokes system is “symmetrizable”.

Theorem (Mock) [6]

A parabolic-hyperbolic system of conservation laws possesses a (convex)
generalized entropy function H(U) and becomes symmetric under the change of
variables

Vi=Hy

The variables V are known as the entropy variables.

@ Examples of entropy functions:

» Scalar conservation law (e.g., Burgers’ equation): H(U) = u

2
» Shallow water equations: H(U) = 3(gh® + |u|?h) [8].
» Compressible Euler equations: H(U) = Kpp~" [6]. o
ndia
» Compressible Navier-Stokes equations: H(U) = —ps [6, 9]. @ el
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Symmetrized Compressible
Navier-Stokes Equations

Compressible Navier-Stokes equations in the entropy variables:
Vixt)=( -Us+p(y+1—s), Us, Us, Us, -Up )€ER’

(y=Dp 1
= 1 _— — -
s n { UIAY , pr="Us 20,

(U3 + U; +U3)

= AOV,t =F Aiv,i — (f{ijV,j),i =0

where

Ao = U,v, Az = AiAo, Kij = KijA(),
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Symmetrized Compressible
Navier-Stokes Equations

Compressible Navier-Stokes equations in the entropy variables:
Vixt)=( -Us+p(y+1—s), Us, Us, Us, -Up )€ER’

(y=Dp 1
= 1 -_— = -
s n { Uf , pr="Us 20,

(U3 + U3 +U3)

= AOV,t + A'L‘V,i = (KijV,j),i =0

where

Ao = U,v, Az = AiAo, Kij = KijAo,
@ Equations in entropy variables are a symmetric parabolic system:

» The matrices Ao and A; are symmetric.
N ( I:<11 I:<12 I:<13 )
» The matrix K = Ko Ko Koz is symmetric positive semi-definite.
K31 K32 Kaa

Sandia
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Symmetrized Compressible
Navier-Stokes Equations

Compressible Navier-Stokes equations in the entropy variables:
Vixt)=( -Us+p(y+1—s), Us, Ug, Us, —-Up )eR’

s:ln{%], p=Us —
1

2U —— (U3 +U; +U3)

= AV +A;V,—(Ky;V,;):=0

where ~ _
Ao = U,v, AZ = A»L‘Ao, Kij = KijAo,

@ Equations in entropy variables are a symmetric parabolic system:
» The matrices Ao and A; are symmetric.
y I~<11 Ko Ki
» The matrix K = Ko1 Koo Kog is symmetric positive semi-definite.
Ksi Ki Kas

Numerical schemes for the compressible Navier-Stokes in the
physical entropy variables were studied extensively by Hughes et al. [9] ml

16/27



l A Stable Galerkin ROM

@ Stability analysis dictates that we compute the POD modes and perform the
Galerkin projection in the entropy variables.
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' A Stable Galerkin ROM

@ Stability analysis dictates that we compute the POD modes and perform the
Galerkin projection in the entropy variables.

@ Entropy estimate (Clausius-Duhem inequality): % Jo PNnNdQ >0

Practical Implication:
Building ROM in entropy variables ensures a priori that stability
property possessed by solutions of the Navier-Stokes equations is
automatically inherited by discrete ROM solutions for any basis!
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' A Stable Galerkin ROM

@ Stability analysis dictates that we compute the POD modes and perform the
Galerkin projection in the entropy variables.

@ Entropy estimate (Clausius-Duhem inequality): % Jo PNnNdQ >0

Practical Implication:
Building ROM in entropy variables ensures a priori that stability
property possessed by solutions of the Navier-Stokes equations is
automatically inherited by discrete ROM solutions for any basis!

@ Galerkin projection performed in the entropy variables:

(pm, AoVare) — (¢m7AiVM,i) + (¢m,i, Kij V) = 0.
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i A Stable Galerkin ROM

@ Stability analysis dictates that we compute the POD modes and perform the
Galerkin projection in the entropy variables.

@ Entropy estimate (Clausius-Duhem inequality): = fQ pNnNdQ >0

Practical Implication:
Building ROM in entropy variables ensures a priori that stability
property possessed by solutions of the Navier-Stokes equations is
automatically inherited by discrete ROM solutions for any basis!
@ Galerkin projection performed in the entropy variables:
(P, AoVare) — (¢m7AiVM,i) + (¢m,i, Kij Var,;) = 0.

@ Substitute modal decomposition Vi, = Z,i‘il ai(t)¢r(x) to obtain an
M x M non-linear dynamical system of the form

M
.,;1 d)m: [AO M¢n) an = — (¢m7 [AZ]MVM,l) - (¢m,i, [K”]MV@ my

17/27



' Efficiency:
I

nterpolation of Non-Linear Terms

Discrete non-linear ROM system is of the form:

S (P [0 (Van)]n) an = — (m, Fi(Var)) =32, (Pmai, fir1 (V)

where

E(Va) = £ (M am(Oém(x),  i=0,.4
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' Efficiency:
Interpolation of Non-Linear Terms

Discrete non-linear ROM system is of the form:

S (D [0 (Van)]n) an = — (fm, Fi(Var)) =32, (Pmai, fir1 (V)

where

E(Va) = & (M am(Odm(x),  i=0,..,4.

@ Inner products cannot be pre-computed prior to time-integration of ROM system.
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' Efficiency:

- Interpolation of Non-Linear Terms

Discrete non-linear ROM system is of the form:

Sl (@ fo(Van)ln) an = = (Sm,f1(Var)) =0, (Dmis fiv1 (Vi)
where BVa) = £ (SV am(én(),  i=0,..4
@ Inner products cannot be pre-computed prior to time-integration of ROM system.

@ To recover efficiency, interpolate™ non-linear terms:

£(Va) = o £ (X0, an(®n () v, i=0,...4

x% — interpolation points for f;, % = “cardinal functions” computed for f;

Sandia

* Computed via the “best points” interpolation procedure of Peraire, Nguyen et al. [5].
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' Efficiency:

: Interpolation of Non-Linear Terms

Discrete non-linear ROM system is of the form:

Sonly (D, [fo(Van)ln) an == (dm, f1(Var)) =30, (bmais fis1 (Var))
where B(Va) =6 (DY, an(dm(),  i=0,..4.
@ Inner products cannot be pre-computed prior to time-integration of ROM system.

@ To recover efficiency, interpolate™ non-linear terms:

£ (Vi) ~ M, (ZM:1 an(t)¢n(x£g)) OB, i=0,..,4

x% — interpolation points for f;, % = “cardinal functions” computed for f;

@ ROM ODE system with interpolation:
May + Y, Gfif;(Dfay) = 0

where M, Gf, Df are pre-computed in the offline stage of ROM. @ ganda
Laboratories

* Computed via the “best points” interpolation procedure of Peraire, Nguyen et al. [5].
18/27



— ' Prelj

= HUgz,
u(3,t) =0,

w4 (5),

(_

@ Initial data: u(z,0) =

@ Formation of rarefaction and shock in the . — 0 limit.

minary Numerical Study 1:

Viscous Burgers Equation

—l<z<3, 0<t<T,
0<t<T,
0, =<0,
1, 0<x<1,
0, >1,

—— Wode

@ Results shown for 4 = 0.01, M = 30 modes, computed from K = 101 snapshots
of ENO-LLF “high fidelity” finite volume solution.

e 1048 vith =30, 4= 001

e 12099 wih 1= 30, =001

#11me 1= 2.46 vith 1M =30, 1= 001




— ' Prelj

= HUgz,
u(3,t) =0,

w4 (5),

(_

@ Initial data: u(z,0) =

@ Formation of rarefaction and shock in the . — 0 limit.

—l<z<3, 0<t<T,
0<t<T,
0, =<0,
1, 0<x<1,
0, >1,

minary Numerical Study 1:
Viscous Burgers Equation

@ Results shown for 4 = 0.01, M = 30 modes, computed from K = 101 snapshots
of ENO-LLF “high fidelity” finite volume solution.

e 1048 vith =30, 4= 001

e 12099 wih 1= 30, =001

#11me 1= 2.46 vith 1M =30, 1= 001




~ 'Preliminary Numerical Study 1:
4 Viscous Burgers Equation

ut + ( ) = HUzz, _1<$<3, 0<t<T, 0
u(—1, u(3,t) =0, 0<t<T, n« —
0, =<0,
@ Initial data: u(z,0) =< 1, 0<z <1,
0, =z>1,

@ Formation of rarefaction and shock in the . — 0 limit.

@ Results shown for 4 = 0.01, M = 30 modes, computed from K = 101 snapshots
of ENO-LLF “high fidelity” finite volume solution.

e 1048 vith =30, 4= 001
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~ 'Preliminary Numerical Study 1:
4 Viscous Burgers Equation

ut (%) =pes, —1<z<3, 0<t<T,
u(—1,t) = u(3,t) =0, 0<t<T,
0, =<0,
@ Initial data: u(z,0) =< 1, 0<z <1,
0, =z>1,

@ Formation of rarefaction and shock in the . — 0 limit.

@ Results shown for 4 = 0.01, M = 30 modes, computed from K = 101 snapshots
of ENO-LLF “high fidelity” finite volume solution.

i 38 i 1= 0,48 with 4 =30, = 001

e 12099 wih 1= 30, =001




~ 'Preliminary Numerical Study 2:
Buckley-Leverett Equation

U + (WQ—'M)Q) = HWlUgg, —1l5<x< 15, oafl——re
xT 015
u(—=1.5,t) = u(1.5,¢) =0, ”
@ Used to model two-phase flow in porous media. : v
@ Highly non-linear, non-convex flux. "

. - . _ 2
@ Gaussian initial condition: u(z,0) = e~ '%".

@ Results shown for © = 0.05, M = 10 modes, computed from K = 50 snapshots
of ENO-LLF “high fidelity” finite volume solution.

= 10, =0 ssEEs

10, =0 005888




~ 'Preliminary Numerical Study 2:
Buckley-Leverett Equation

2 ——— Mode 1
xT 015 /
w(—1.5,t) = u(1.5,£) = 0, b / \\
- | X
@ Used to model two-phase flow in porous media. 7 N/
@ Highly non-linear, non-convex flux. "

. - . _ 2
@ Gaussian initial condition: u(z,0) = e~ '%".

@ Results shown for © = 0.05, M = 10 modes, computed from K = 50 snapshots
of ENO-LLF “high fidelity” finite volume solution.

= 10, =0 ssEEs

10, =0 005888
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i Summary & Future Work

This Paper: Extension stable Galerkin ROM based on the
continuous projection method previously developed [2-4] for
linearized compressible flow equations to non-linear equations.

@ Implement the entropy stable compressible Navier-Stokes ROM
formulated in this paper; compare to other non-linear model reduction
techniques (e.g., discrete Galerkin projection approach).

@ Extend model reduction technique to allow incorporation of stabilization
and shock-capturing operators [9].

@ Extend model reduction technique to allow incorporation of turbulence
models (LES, RANS-LES).

@ Explore robustness of ROM with respect to parameter changes (reduced
basis interpolation techniques [7]).

@ Investigate the viability of the POD basis for non-linear problems: are
there “better” bases to employ (e.g., balanced POD)? entropy@ St
stability result is basis independent!) Lbaes
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Introduce the notation:

Symmetrizing Matrix A

y=7—-1, kl:i(v22+v32+‘/42)7 k2:k17’ya

ks = ki —2vki +, ka=ks—7, ks = k3 — (k1 + k),
1 =7Vs — V2, di = =V Vs, e1 = VaVs,

c2 = Vs — Vi, de = =V2Vy, ez = VaVs,

es =4Vs — Vi, ds = —V3 Vi, ez = V4Vs.

-1

- 1/(=1) s
w5

@ Inverse transformation V. — U:
UT = pl( _‘/57 ‘/27 ‘/37

@ Symmetrizing matrix Ao:

p1
A = U = —
0 vV Vs

symm.

Vi, 1= g (VF+ Vi + Vi)

€1 €2 €3 Vs(l — k)1)
c1 di da Vako
c2 ds Vzkz
C3 V4]€2 Sandia
—ks @ m
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61V5
. N p1
Ay =F; v =—
VV?
symm.
GQV%
~ ~ pl
Az =Fav = —
Vi
symm.
83V5
. N p1
Az =F3v =
VV?
symm.

61V5 d1V5
—(c1+27V5)Va —c1Vs
762‘/2
dlv% CQV%
—c1Vs —c2Va
—(c2 +27V5)V3
d2 V5 7d3 V5 C3 V5
—01V4 —d2V3
—caVa

—(e3 +27Vs)Va

Jacobians of Symmetrized
Euler Fluxes A;

d2Vs
—C1 V4
—d,Vy
—C3V2

dsVs
—d1Vy
—c2Va
—c3V3

koes
—C3 V2
—CgV%

kze1
cr1ko + ’7V22
kady s
kado
ks Va

koea
kady
coko +7VE s
kads
k5 V3

kqdo
kads

c3ka + ’7V42
ks Va

Wf=
National
Laboratories
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Symmetrized Viscous and Heat

Fluxes KU
0 0 0 0 0
0 —(v—-2mV§ 0 0 (A +2pn)e
K4 = i 0 0 qu52 0 pes
11 VB 0 0 0 2 3
5 —pVs Hes
0 (t2mer  pea  pes = [+ 20)VE +u(VE + V) - Y]
0 0 0 0 0
3 1 0 0 —AVE 0 Ae2
Kz = Vs 0 —pVZ 0 0 pey ,
51 0 0 0 0
0 nes de1 0 (A4 p)ds
0 0 0 0 0
3 1 0 0 0 —AVZ Aes
Kis=— | 0 0 0 0 0 ,
Vol o —pv2 o 0 e
0 nes 0 Aer (A + p)ds
Sandia
National

Laboratories
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Symmetrized Viscous and Heat
Fluxes K;; (Continued)

0 0 0 0 0
0 —HV52 0 0 pei
Koy= L | 0 0 —(A 4 2u) V2 0 (A + 2u)en ’
V2l o 0 0 —uV2 pes
0 per (A +2p)es pes - [(A +2u) Vi + p(V5 + V) — ”;%"]
0 0 0 0 0
) 1 0 0 0 0 0
Kos=—5| 0 0 0 —AVZ Aes ,
Vol o o —pv2 0 ez
0 0 pes Aeg (A + p)ds
0 0 0 0 0
0 —uv? 0 0 peq
Ras = R ) 0 —nv2 0 neg
va o 0 0— (A+20)V2 (A +2u)eg
0 uer pes (t2ues = [+ 2mVE + u(vE + vE) - U]

Ko = KL, Kz = KL, Kz = KL,
Sandia
National
Laboratories
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~ 'Semi—Discrete ROM System
- Matrices

emi-discrete ROM ODE system following interpolation:

4
May + > Gfif;(Dfiay) =0,

=1
@ Gfi matrices:

£ 11 12 3 ks 72
Clsimonysram = [ @6l otoll sl ofull gtuilae,

fit1 i1 fiv fiv fig1 fi
G[s(m 1+1:5m] — -/(¢lz +7¢z, +7¢l, +7¢l, +,d>l, Jrl)dQ i=1,2,3

fori,m=1,...M.
@ Mass matrix M: fork = 1,..., M,

M = GIOE ], (D[fO]kaM) ;

@ Dfi matrices:
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