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Advanced Applications of Scintillators

= Film of scintillating material required to create ion beam-induced luminescence (IBIL)
1) IBIL creates signal corresponding to location of ion strike
2) Radiation tolerance of material critical to experiment
3) Must maintain optical properties as exposed to GeV-energy heavy ion beams
4) In-situ ion irradiation TEM will allow for microstructual studies of radiation tolerance for these

materials

lon beam induced charge (IBIC) imaging of
Sandia SRAM device
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Advanced Applications of Scintillators

= Current Issues
1) Long decay times
2)  Crystal anisotropy
3) Low energy resolution (low luminosity & poor linearity)
4) Complicated synthesis (single crystal growth)
5)  Chemical instability (hygroscopic)

= Scintillators with low energy resolution & detection efficiency cannot distinguish radiation type of quantify

radiation
= Discovery of new scintillating materials needed

US orts: 2 Billion Metric Tons
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Introduction — Types of Scintillators

= Normal light emission is through singlet state, ~ns lifetime

= Triplets (3/4 of the excitation) normally a loss for scintillation

= Heavy metal fluor gives radiative path for triplets ~ ys time scale

= Triplet emission through SOC is:
1. always longer wavelength than singlet emission

2. always longer lifetime than singlet

3. rate determined by exciton transport, density of states, and tau
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Introduction — Types of Scintillators

Determine size effects (nano—meso) & activators of oxides (baseline)
Develop novel size controlled scintillator materials based on unexplored high Z ME,
Investigate radiation Interaction (hano—meso)
Improvements:
Astopping power (higher density, less material)
Vband gap (better luminosity emitted)
Vnon-radiative decay (noise reduction)
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Experimental — In-Situ lon Beam Induced

Luminescence

lon Beam Induced Luminescence

= 3 MeV H* beam used as excitation
= Scintillation light collected as ion beam

excites sample

= Light collected with OM-40 microscope or
fiber optic mounted close to sample
= Avantes AvaSpec 2048 spectrometer

Decay Times

' 3 MeV H* beam

' Thin films of samples on PIN diodes

' Hamamatsu PMT run in photon-counting
mode

= Light intensity measured as a function of
time after ion strike

Radiation Hardness

= Radiation hardness experiments performed
with 3 MeV H* beam from tandem accelerator
= |BIL Spectra measured constantly as sample
exposed to beam

= Overall decrease in emitted light observed as
materials damages

' Sandia National Laboratories



Experimental — Nearly In-Situ SEM lon Irradiation
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= Sample oriented and focused in front of ion beam

= Scintillation light collected as ion beam excites sample

= After irradiation, sample board translated in x-direction to orient in front of SEM
= Micrograph collected, then series repeated
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Experimental Setup — In-Situ Experiments
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Experimental — TEM Tomography

= Samples with interesting microstructures studied with tomography

over range of tilt angles

= 3D reconstructions of particles obtained

= Sample irradiated inside in-situ TEM

® Tomography repeated to observe potential microstructural '

changes resulting from irradiation Hummingbird Tilt Stage
(-82° to +82°)

A) Electron Beam B)

Heavy lon
Beam

TEM Pole Piece
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IBIL Intensity (arb units)

Results — IBIL of Organic Scintillators

= IBIL demonstrates different luminescence characteristics than PL
® Drastic degradation in optical properties as a result of irradiation observed in

organic scintillators
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- A "~ Results — IBIL of MOFs

——

Metal-organic frameworks demonstrate spectral discrimination with IBIL/CL
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= PL and IBIL of MOF demonstrating spectral
discrimination
= IBIL decay of MOFs with irradiation — changes
observed in relative peak height

= Spectral discrimination
=CL simulates response to gamma rays
= |BIL simulates response to neutrons

(1) Sandia National Laboratories




Results — IBIL of Oxides
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u P47 is effective phosphor — PL and IBIL similar
1= Peak emission dependent on excitation wavelength
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= Degradation in optical properties also observed
in P47

= Oxides demonstrate improved radiation tolerance
compared to organic scintillators
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Results — IBIL of Nanoscintillators
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e — . e
e @ Results - Nanoscintillators

Nearly In-Situ SEM lon Irradiation of Nanoscintillators

3 MeV H+ 7nA 1sec

Want to understand if microstructure is affected by irradiation and how that influences optical properties
Drop cast films of PbWO, nanoscintillators irradiated with 3 MeV proton beam, then imaged with SEM
= Material being ablated off of the surface — need better technique to study microstructural changes

(1) Sandia National Laboratories




~— - Results — Microstructure

30.00 nm PbWO4 200.00 nm PbWO4 1

= Entire family of MWO, materials synthesized:
M = Ca, Cd, Pb, Sr, Ba, Zn, Na
= Varying composition and synthesis method results in a range
of interesting morphologies @ Sandia National Laboratories




~ Results - Tomography

Raw stack of_CdWO4 nanoparticles at 60,000X

= Images acquired
with SerialEM
= 120° of total tilt
= Each frame
collected at 1.5° of tilt




.~ Results - Tomography
Aligned and rotated stack of CdAWQO,, nanopatrticles at 60,000X

= Aligned to remove
jitter
= Rotated so tilt axis
is vertical




~...q, ~ Results - Tomography

Processed tomography data of Cd WO, nanopatrticles at 60,000X

= Processing done in
eTomo as part of the
IMOD imaging
processing package
= Particle size: ~20-50
nm

20 nm

Kremer J.R., D.N. Mastronarde and J.R. Mclintosh (1996) Computer visualization of three-dimensional image data using
IMOD. J. Struct. Biol. 116:71-76.

Mastronarde, D. N. (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J.
Struct. Biol. 120:343-352.
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Future Work
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= Develop 2" generation of TEM ion beam line at Sandia

= 4D (in-situ TEM tomography )

3D tomo - Irradiation = 3D tomo = Irradiation - 3D tomo...
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Conclusions & Acknowledgements

In-situ TEM lon Irradiation is proving to be a useful technique to study potential novel
scintillating materials

Radiation-solid interactions of nanomaterials is not well-understood

Observing scintillating materials during irradiation is crucial to further developing them for
application

Further studies will give insight into if/fhow microstructural changes under irradiation affect
optical properties
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