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Basic Simulation Parameters

The picosecond-scale, IR laser pulse strikes a dense thin-foil gold target, where the high
field intensity accelerates electrons to high energies. These electrons propagate through the
dense gold plasma, where the electron-ion interaction produces bremsstrahlung X-rays,
which are then transported to the edges of the simulation space. Once an X-ray
macroparticle reaches the edge of the simulation space, ensuring its interaction with the
target was over, the x-, y-, and z-components of its momentum and location, along with the
time and macroparticle weight are saved to a particle extraction file. These particle
extraction files, one for each boundary face, can be used as inputs for a simple transport
simulation that carry the particles to a spherical target with a 1 meter radius. Here, the X-
ray number fluences are scaled by a factor of 2.6x10-1° (characteristic of a several-MV
diode source) to get a reasonable estimate of the dose -- a strictly accurate dose calculation
would depend on the detailed energy spectrum of the X-rays and the specific detector.

« Peak Au’" density of 6¢22 cm™

* Foil thickness of 10 um, 20 um blow-off plasma, 50 um foil radius,
30° foil angle

« Gaussian laser spot of 10 um; 80 J laser in 1.4 ps, 5x10'° W/cm?
e Scale number fluence by 2.6e-10 to get dose

 Also scale from measurement location to 1-meter radius
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Figure 18. Cross-section
| plot from the P-polarized
o simulation at y = 0 and

0.005

t =10 ps of number density
for: doubly ionized gold ions
(left) and electrons (right).
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10 um thick, 50 wm radius, 30° tilt Au foil — 2D

Dose @ 1-m; time 0.01000

LULI21 — 1400 fs, 12 ml H 2.5x| : Ipi_exp_lsp — Tue May 19 22:31:
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Fully 3D Simulations

Blow-off » Laser incident along Z-axis in
Plasma positive direction

e X-polarized E-field = P-pol
* Y-polarized E-field > S-pol

Laser
« Typical gold number density:
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10 um thick, variable radius, 0° tilt Au foil

0-degree, R=0.005 cm, Circular Polarization - Dose (rad)

0.25

I * 3D cylindrical simulation to 10 ps
* Dose @ 1-meter 1s:

e 150-250 mRad for R=50 um

e 130-220 mRad for R=100 pum

e 100-200 mRad for R=150 um
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Stmulation Space Decomposition

Large number of particles in the X=+100 pm
simulation space (~3.85¢e8) means
careful partitioning can improve
simulation time

Complicated by non-uniform

gridding in all dimensions

Volume broken into 8 regions

First division, 1n X, divided
particles evenly between top and
bottom half X =-100 um

Second division, in Y, divides particles evenly into each of the four
regions — smaller Y-extent in the center reflects smaller gridding

Final division, in Z, puts particles into 48 evenly-sized domains
and adds 6 larger domains for field solve before and after disk



X—ray Count

X-ray Histories — 3D Cartesian, P-Pol
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X—ray Count

X-ray Histories — 3D Cartesian, S-Pol
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30-degree, R=0.005 cm, P-Polarization - Dose (rad) 30-degree, R=0.005 cm, P-Polarization - Dose (rad)
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Figure 22. Target doses at 1-meter plotted onto spheres. Plots (a) and (b) are two views from opposite sides of the sphere for the P-
Polarization case; (c) and (d) are the same views for the S-Polarization.



X—ray Count
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* New geometry requested to match SNL
experiments
* Square foil with S =100 um, 45-degree tilt
e 500 fs duration, a 5.9 um FWHM spot size, and
a total incident field energy of ~100J
* Simulation only ran to 7 ps — results scaled up
by 20% to compare to 10 ps runs
[ ]

8.60x1013 total X-rays and 178.0 mRad,

averaged at 1-meter



The scaled 1 meter dose shows values from 220 mRad (near the disk axes) to 140
mRad (near the disk edge). This lower value matches with experimentally
measured values on the foil edge that were on the order of 100 mRad.
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Target doses at 1-meter plotted onto spheres. Plots (a) and (b) have the fluences scaled up by 20% to estimate the dose at 10 ps.



Global X-ray Spectra — 3D Cartesian
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Global X-ray spectra for the two polarizations and SNL geometry. The differences
arise from the different X-ray counts for the three cases.
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Conclusions

LSP used to model full physics of a dynamic laser / plasma
interaction and bremsstrahlung X-ray production

X-ray production is very sensitive to foil size, but fairly
insensitive to incident laser angle

Typical 1-meter dose for targets of interest 1s in the 100-200
mRad range, but shows significant angular variation

This dose matches experimental values

Energy spectra also show strong variations with angle due to
self-absorption by the foil — this has consequences for the
accurate dose calculation

Future work could explore the effect of alignment jitter or blow-
off characteristic length
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