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AbStraCt: We introduce a new meshing tool for the computational modeling and

simulation of carbon sequestration at specific sites. Fractures created by the insertion of high
pressure gases in carbon sequestration must be included in the geometric model. Our meshing
tool meets the meshing requirements imposed by the fracture mechanics simulation codes,
namely, to create a good quality Voronoi mesh whose edges have random orientation, conforms
to domain boundaries and to internal fractures and voids. Our approach is based on a random
cloud of n points whose locations are determined by solving a maximal Poisson-disk sampling
problem over non-convex domains with holes, required points and multiple regions in contact. A
novel constrained Delaunay algorithm is then utilized to generate Poisson-disk triangulations
using O(n) time and memory. Finally the required Voronoi mesh is constructed by retrieving the
dual of the triangular mesh. Each phase (sampling, triangulation, Voronoi meshing) of our
algorithm utilizes local operations which facilitates parallel implementations. Examples of the
use of our meshes within a fracture simulation are given. The meshing tool can also create
hybrid meshes that conform to the geometric complexities that occurs naturally within a regional
domain containing long, thin layers with twisting, faulting, and pinch-offs.

1. Poisson-Disk Sampling

Maximal Poisson-disk sampling (MPS) selects random points {x;} = X, from a domain, D. There
is an exclusion/inclusion radius . empty disk means no two sample points are closer than r to
one another; and maximal means samples are generated until every location is within r of a
sample. D, is the sub-region of D outside the r-disks of the first i samples. For an unbiased
sampling procedure, the probability P of selecting a point from a disk-free sub-region W is
proportional to W's area.
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A maximal r-disk sample (1b) (1c) is equivalent to a maximal sample of non-overlapping »/2-
disks. These are also known in the literature as random close packings. Sphere packings
appear frequently in nature: e.g. sand, atoms in a liquid, trees in a forest. Processes generating
packings include random sequential adsorption, hard-core Gibbs process, and the Matern
second process. Algorithmically, by successively generating points and rejecting those violating
(1b) it is easy to get a near-maximal sample if run-time is unimportant. In recent years the
community has developed unbiased MPS algorithms with near linear performance. There are
variations based on advancing fronts that have biased point locations, violating (1a), but may be
faster and use less memory.

In 2011, We proposed two methods to solve this problem. The first one [1] has a time complexity
of O(n log n) and satisfies the sampling conditions and achieves maximality independent of the
roundoff error by constructing uncovered areas with geometric primitives. The second method
[2] works in any d-dimensional space and has a time complexity of O(n). The performance is
improved through the use of a finite sequence of uniform grids with increasing resolutions
instead of representing the remaining voids via geometrical primitives. The output of our
algorithm is illustrated in Figure 1. A comparison with other sampling methods in Figure 2 shows
the efficiency of our approach.

Fig. 2. Poisson-disk sampling of a non-convex domain (top) and unit cube (bottom). For the 3D
case we show non-intersecting sphere with radius /2.
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Fig. 2. Memory and time used by our sequential MPS implementation vs. other sampling codes.

2 Delaunay / Voronoi meshing

The cell structure utilized in our sampling algorithm enables a local, simple, and fast algorithm
for constructing the constrained Delaunay triangulation, CDT [3]. This algorithm iterates in
constant time over each point p of the maximal Poisson distribution, constructing its star, i.e.
the triangles containing it. This results in linear total time. Communication between different
points is not required except when a non-unique solution exists. The performance of the
sequential implementation illustrate its efficiency in Figure 3.
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Fig. 3. Our serial CDT implementation shows a linear performance (left). Uniform random CDTs of
a seismic domain with internal boundaries (right).

Finally, the required random Voronoi mesh is generated by retrieving the dual of the CDT
mesh. This operation has to respect the internal and the external boundaries of the domain.
Non-convex Voronoi cells along the boundaries are split into a set of triangles. Moreover,
edge collapse operations take place to eliminate all short edges. The capability of our Voronoi
meshing tool to handle various domains is illustrated in Figure 4.

Fig. 4. Our Voronoi mesher is capable of handling non-convex domains with internal boundaries.

3 Hybrid meshing

The hybrid mesher sets up the problem for the Delaunay and Voronoi sub-regions and then
calls the algorithms described in the previous subsection. The hybrid capability also contains
a simple algebraic method for generating structured quadrilateral meshes on subregions. The
hybrid mesher can be viewed as “glue” between different meshing algorithms; alternative
meshing algorithms could also be included.
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Fig. 5. A hybrid mesh formed of Voronoi cells, structured quadrilaterals and Delaunay triangles
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4. Application Example

In this section we present an application example that utilized our meshing tool to create a
fracture conforming Voronoi mesh to simulate the injection of CO, below a sub-scale model of
a caprock layer (1000 m. below the surface). As illustrated in Figure 6, the initial fractures
represent joints that are sealed, but are reactivated due to the changing mechanical stress and
deformation caused by the injection in the reservoir below the caprock. The nucleation/growth
criterion is based on a limit surface of the allowable stress states. A cohesive law is used on
these new surfaces and decays as the crack opens. The mesh randomness should be viewed
as a subset of the material variability (random field in strength).

1

Fig. 6. Injecting CO, below a sub-scale model of a caprock layer. The color represents maximum
principal stress. Frames are snapshots of the solution as it progresses in time.

5. Recent Developments

We have recently extended our Voronoi mesh tool to handle 3-dimensional domains. The new
extension generates Voronoi cells directly without generating CDTs. The execution time is
linear in n. The final mesh is associated with bounds on some quality measure such the
dihedral angles and the aspect ratio. Figure 7 illustrates the output of our algorithm in 3D.
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Fig. 7. Voronoi mesh for a model with smooth surface and narrow regions (top) and a non-
convex model with many sharp features (bottom)
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