' SAND2011- 4710C

Preparing for Tomorrow's Systems:
Manycore, Resilience, Patterns and Transition

Michael A. Heroux
Scalable Algorithms Department
Sandia National Laboratories

Collaborators:

SNL Staff: [B.|R.] Barrett, E. Boman, R. Brightwell, H.C. Edwards, A. Williams
SNL Postdocs: M. Hoemmen, S. Rajamanickam

MIT Lincoln Lab: M. Wolf

ORNL staff: Chris Baker

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Sandia
Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. National

Laboratories

Quiz (True or False)

1. MPIl-only has the best parallel performance.
Future parallel applications will not have MPI_Init().

Use of “markup”, e.g., OpenMP pragmas, is the least
Intrusive approach to parallelizing a code.

All future programmers will need to write parallel code.

DRY is not possible across CPUs and GPUs.

CUDA and OpenCL will be footnotes in computing history.
Extended precision is too expensive to be useful.
Resilience will be built into algorithms.

A solution with error bars complements architecture trends.
0.Global SIMT is sufficient parallelism for scientific computing.

Sandia
m National

Laboratories

W N

= © © N O O =

Trilinos Background & Motivation

Sandia

Current Contributors

Chris Baker
Ross Bartlett
Pavel Bochev
Erik Boman

Lee Buermann
Todd Coffey
Eric Cyr

David Day
Karen Devine
Clark Dohrmann
David Gay

Glen Hansen
David Hensinger
Mike Heroux
Mark Hoemmen
Russell Hooper
Jonathan Hu
Sarah Knepper
Patrick Knupp
Joe Kotulski
Jason Kraftcheck

Rich Lehoucq
Nicole Lemaster
Kevin Long
Karla Morris
Chris Newman
Kurtis Nusbaum
Ron Oldfield
Mike Parks
Roger Pawlowski
Brent Perschbacher
Kara Peterson
Eric Phipps

Siva Rajamanickam
Denis Ridzal

Lee Ann Riesen
Damian Rouson
Andrew Salinger
Nico Schlomer
Chris Siefert
Greg Sjaardema
Bill Spotz

Heidi Thornquist
Ray Tuminaro

Trilinos Contributors

Jim Willenbring
Alan Williams
Michael Wolf

Past Contributors

Paul Boggs
Jason Cross
Michael Gee
Esteban Guillen
Bob Heaphy
Ulrich Hetmaniuk
Robert Hoekstra
Vicki Howle

Kris Kampshoff
Tammy Kolda
Joe Outzen

Mike Phenow
Paul Sexton

Ken Stanley
Marzio Sala
Cedric Chevalier

Evolving Trilinos Solution

» Trilinos! is an evolving framework to address these challenges:

¢ Fundamental atomic unit is a package.

+ Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).
¢ Provides a common abstract solver API (Thyra package).
L 4

Provides a ready-made package infrastructure:

* Source code management (git).

* Build tools (Cmake).

* Automated regression testing.

» Communication tools (mail lists, trac).

+ Specifies requirements and suggested practices for package SQA.

* |n general allows us to categorize efforts:
+ Efforts best done at the Trilinos level (useful to most or all packages).
¢ Efforts best done at a package level (peculiar or important to a package).

+ Allows package developers to focus only on things that are unique to
their package.
— _ . Sandia
1. Trilinos loose translation: “A string of pearls” National
Laboratories

Transforming Computational Analysis To
Support High Consequence Decisions

Systems of systems

Optimization under Uncertainty

Accurate & Efficient Forward Analysis

Forward Analysis

Each stage requires greater performance and error control of prior stages:
Always will need: more accurate and scalable methods.
more sophisticated tools.

19525 Total

[
Trilinos Download History Mar 2005 - May 2011

10.6
~10.4
~10.2
~10.0
©9.0
K£8.0
=~ 7.0
6.0
KL5.0

TT-/eN
01-23@
01-das
oT-unf

oT-1eN
60-23@
60-das
60-unr

60-1eN
80-23@
80-das
80-unr

80-1eN
£0-23@
L0-d3s
L0-ung

L0\
90-23@
90-das
90-unf

90-1eN
§0-23@
G0-das
So-unfg

600
500

Trilinos Download History

SO-1eN

o o o
o o o
< o™ o~

100

speojumoq jJo JaquinN

Month

Registered User by Region

Registered Users by Region (6158 Total)

B Europe

B US (except Sandia)

U Sandia (includes unregistered)

O Asia

B Americas (except US)

B Australia/NZ

B Africa

Sandia
National

Registered Users by Type

Registered Users by Type
(6158 Total)

Industry; 660
Other; 146

B University
Personal; 742 A @ Government
OPersonal
University; -
3698 Industry
Government; ®Other
912

Sandia

Ubuntu/Debian: Other sources

000 Ubuntu -- Details of source package trilinos in maverick
| 4| » |+ Qo /packages.uountu.com/source/maverick/math/trilinos € | (Qr ubuntu petsc downoad Q)

[0 B Trilinoshan. Google Code Report Time Dex White Pa__le for Free SRN Browser RemoteSandiaCov Google Maps News (455) Popularv How to Conn._sions (RDP)

12 ubuntu

55 UDenty 3> Packaaes >> maverick >> S0Urce 3> mah >> trilisos

[karoig) [lucig) [maverick)

Source Package: trilinos (10.0.4.dfsg-1.1) [universe]

The following binary packages are built from this source package: | |
000

Deblan -~ Details of source package trilinos in sid
parallel solver libraries within an obj | 4 | » | + |© nitp://packages.debian.org/source/sid/trilinos & | (Qv trilinos detran download

TrilinosHan.. .Google Remote.Sandia.Gov
parallel solver libraries within an ob} m &8 Code Report Time Dex White Pa._le for Free SRN Browser Google Maps News (455)¥ Populary How to Conn...sions (RDP)

Q)

%ﬂvu Iibraries within an ob) (a dd)ian
libtrilinog-doc

parallel solver libraries within an ob|

(Search) | source package names = |
alepiony

>> Debian >> Packages >>

sid (unstable) >> Source >> math >> trilinos

parallel solver libraries within an ob|

[squeeze][sid]
Other Packages Related Source Package: trilinos (10.4.0.dfsg-1)
| @ buis-depends] @ vuig-sepends-ing The following binary packages are built from this source package:
- - mework Links for trilinos
common build system for Debi parallel solver libraries within an object-oriented software fra
. Debian Resources:
. to work with series of pat mmmr Ifbrarlos within an object-oriented software framework

@ python-central i
register and build utility for Py

high performance message passing library - header files

Daownload trilinne Direct solution of larqe. sparse systems of linear equations

Capability Leaders:
Layer of Proactive Leadership

" Areas:
¢ Framework, Tools & Interfaces (J. Willenbring).
¢ Software Engineering Technologies and Integration (R. Bartlett).
¢ Discretizations (P. Bochev).
¢ Geometry, Meshing & Load Balancing (K. Devine).
¢ Scalable Linear Algebra (M. Heroux).
¢ Linear & Eigen Solvers (J. Hu).

¢ Nonlinear, Transient & Optimization Solvers (A. Salinger).
¢ Scalable I/O: (R. Oldfield)

= Each leader provides strategic direction across all Trilinos packages
within area.

Trilinos Package Summary

Objective

Package(s)

Discretizations

Meshing & Discretizations

STKMesh, Intrepid, Pamgen, Sundance, ITAPS, Mesquite

Time Integration Rythmos
Automatic Differentiation Sacado

Methods
Mortar Methods Moertel
Linear algebra objects Epetra, Jpetra, Tpetra, Kokkos
Interfaces Thyra, Stratimikos, RTOp, FEI, Shards

Services Load Balancing Zoltan, Isorropia
“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika
C++ dutilities, 1/0, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx
Iterative linear solvers AztecOO, Belos, Komplex
Direct sparse linear solvers Amesos, Amesos2
Direct dense linear solvers Epetra, Teuchos, Pliris
Iterative eigenvalue solvers Anasazi, Rbgen
ILU-type preconditioners AztecOO, IFPACK, Ifpack2

Solvers

Multilevel preconditioners ML, CLAPS
Block preconditioners Meros, Teko
Nonlinear system solvers NOX, LOCA

Optimization (SAND)

MOOCHO, Aristos, TriKota, Globipack, Optipack

Stochastic PDEs

Stokhos

Observations and Strategies for Parallel
Software Design

Sandia

}/‘1

Three Design Points

 Terascale Laptop: Uninode-Manycore
» Petascale Deskside: Multinode-Manycore
« Exascale Center: Manynode-Manycore

Sandia
m National
Laboratories

1

= ol

Basic Concerns: Trends, Manycore

» Stein’s Law: If a trend cannot

continue, it will stop. Parallel CG Performance 512 Threads

Herbert Stein, chairman of the Council of 32 Nodes = 2.2GHz AMD 4sockets X 4cores
Economic Advisers under Nixon and 180
Ford. 160
140 “Status Quo” ~ MPI-only
| 2 120
* Trends at risk: 2 100
T 80 p32 x t16
— Power. 2 60 ~B-p128 x t4
. (D 40 —A—p512 x t1
— Single core performance. %
— Node count. 0
. 1E+05 1E+06 1E+07
- MemOl’y sSlze & BW- 3D Grid Points with 27pt stencil
— Concurrency expression in
existing Programming Strong Sealing Potential | | et e VL.
Models.
— Resilience.

Sandia
National
15 "‘ Laboratories

— &

Observations

* MPI-Only is not sufficient, except ... much of the time.

* Near-to-medium term:

— MPI+[OMP|TBB|Pthreads|CUDA|OCL|MPI]

— Long term, too?
» Concern:

— Best hybrid performance: 1 MPI rank per UMA core set.
— UMA core set size growing slowly = Lots of MPI tasks.

* Long- term:

— Something hierarchical, global in scope.

» Conjecture:

— Data-intensive apps need non-SPDM model.
— Will develop new programming model/env.
— Rest of apps will adopt over time.

— Time span: 10-20 years.

Sandia
National
Laboratories

\

What Can we Do Right Now?

« Study why MPI was successful.
« Study new parallel landscape.

* Try to cultivate an approach similar to MPI (and
others).

Sandia
m National
Laboratories

“{

18

MPI Impresssions

Sandia
National
Laboratories

* Observations
— “assembly language” of para"

— lowest common denomi~
 portable across ar~’ ‘\5

— upfront effort r~

P ;caomd(n 1, 2 03,5k}
* n(3) = [-1..1, -1..1, -1..1];

x?éfﬂ&e“"cair@&‘ﬂ £1oae N

Fclude 7gidBabs. f125, 0-125, 0.0625/);
T(i:3,Kk in Stencil] float
shteger nl7 m2(iA30)kk (31=0) + (k!=0));
dpohse precisionminl,n2,n3)
iptegerpaxis= R.str

125k ?Fadékkém\\tgsa\me

fraien 1) then
5 Gyl a1t) F P rscerorn) s
call give3(axis, +1, u, nl, n2, n3, kk

(
do

call give3(axis, -1, u, nl, n2, n3, kk
call sync_all()

call take3(axis, -1, u, nl, n2, n3)
call take3(axis, +1, u, nl, n2, n3)

call commlp(axis, u, nl, n2, n3, kk)

do axis =1,
call sync_all()
call sync_all()
enddo
call zero3(u,nl,n2,n3)
endif
return
end

subroutine give3(axis, dir, u, nl, n2, n3, k)
use caf_intrinsics
implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, nl, n2, n3, k, ierr
double precision u(nl, n2, n3)

integer i3, i2, il, buff_len buff_id

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

buff_len = buff len + 1
buff(buff_len,buff_id) = u(2,
i2,i3)
enddo
enddo
buff (1:buff_len,buff_id+l) [nbr (axis,dir k)]
> buff (1:buff_len buff_id)
else if(dir .eq. +1) then

do i3=2,n3-1

do i2=2,n2-
buff len = buff len + 1
buff(buff_len, buff_id) = u(nl-1,
i2,i3)
enddo
enddo

buff (1:buff_len,buff_id+l) [nbr (axis,dir k)]
> buff (1:buff_len,buff_id)

endif
endif

vlf(axis .eq. 2)then
£(dir .eq. -1)then

11

3D Stencil in NAS MG

do i3=2,n3-1

i1=1,n1
buff len = buff_len +
buff(buff len, buff xd) =u(i1,
2,13)
enddo
‘enddo

buff (1:buff_len,buff_id+1) [nbr (axis,dir k)]
buff (1:buff_len,buff_id)
else if(dir .eq. +1) then

do

=1,n1
buff_len = buff len + 1
buff(buff_len, buff id)= u(il,n2-
1,i3)
enddo
enddo

buff (1:buff_len,buff_id+l) [nbr (axis,dir k)]
buff (1:buff_len,buff_id)

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

(n2
il=1,n1
buff_len = buff_len + 1
buff(buff_len, buff id) = u(
i1,i2,2)
nddo

enddo

buff (1:buff_len,buff_id+l) [nbr (axis,dir k)]

> buff (1:buff_len, buff_id)

else if(dir .eq. +1) then

do i2=1,n2
do il=1,nl
buff_len = buff_len + 1
buff (buff_len, buff id) = u(
i1,i2,n3-1)
enddo

enddo

buff (1:buff_len,buff_id+1) [nbr (axis, dir k)]

> buff (1:buff_len,buff_id)

endif
endif

return
end

subroutine take3(axis, dir, u, nl, n2, n3)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, nl, n2
double precision u(nl, n2, n3)

integer buff_id, indx
integer i3, i2, il

buff_: xd 3+ dir
indx :

if(axis .eq. 1)then
if(dir .eq. -1)then

u(nl,i2,i3) = buff (indx, buff_id)

else if(dir .eq. +1) then

i indx + 1
u(1,i2,i3) = buff(indx, buff_id)
if(axis .eq. 2)then
if(dir .eq. -1)then

= indx + 1
= buff (indx, buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do il=1,nl
indx = indx 1
u(il,1,i3) buffhndx, buff_id)

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2

il=1,n1
indx = indx + 1
u(il,i2,n3) = buff (indx, buff_id)
ddo.

else if(dir .eq. +1) then

n1
indx = in 1
u(il,i2, 1; buff(Lndx, buff_id
enddo
enddo
endif
endif
return
end

subroutine commlp(axis, u, nl, n2, n3, kk)
use caf_intrinsics
implicit none

include 'cafnpb.h’
include 'globals.h'

integer axis, dir n3
double precision u(5,8, ")

integer i3, i2, il, buff_len,buff_id
integer i, kk, indx

dir = -1

uEE_id = 3 + dir
uff len = nm2

do i=1,
buff(). buff_id) = 0.0D0

end

dir = +1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff (i,buff_id) = 0.0D0
enddo

dir = +1

buff_id = 2 + dir
buff len = 0

i2=2,n2-1
buff_len = buff len + 1
buff (buff_len, Buff_id) = u(nl-1,

- len = buff_len + 1
buff (buff_len, buff id)= u(il,n2-
1,i3)
enddo
enddo
endif

if(axis .eq. 3)then
do i2=1,n2

1,n1
buff_len = buff_len + 1
buff(buff_len, buff id) = u(il,i2,n3-

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2

do i2=2,n2-
buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2, i2,i3)
ddo

if(axis .eq. 2)then
do i3=2,n3-1

il=1,n1
buff_len = buff len + 1
buff (buff_len, buff_id) = u(il,
2,i3)
enddo
en
endif

if(axis .eq. 3)then
do i2=1,n2

do il=1,
buff len buff_len + 1
buff (buff_len, Buff_id) = u(il,i2,2]
enddo
enddo
endif
do i=1

buff (i,4) = buff(i,3)
buff(i,2) = buff(i,1)
enddo

V- - -

buff_id = 3 + dir
indx =

if(axis .eq. 1)then
do i

i2=2,n2
indx = indx + 1

u(nl,i2,i3) = buff(indx, buff_id)
o

if(axis .eq. 2)then
do i3=2,n3-

do
indx = indx + 1
u(il,n2,i3) = buff(indx, buff id)
enddo
enddo
endif
3)then
/n
ndx = indx + 1
u(il,i2,n3) = buff(indx, buff_id)
enddo
enddo
endif
dir = +1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do 13=2,n3-1

do i2=2,n2-1

indx = indx + 1
u(l,i2,i3) = buff (indx, buff_id)
o

if(axis .eq. 2)then
do i3<2.n3-1
do

-
inax - 1
u(il,1 lz) buf£11ndx, buff_id)

3)then
e
indx = 1
w112, 1) buff(xndx, buff_id
enddo
enddo
endif
return
¢

ANy

Brad Chamberlain, Cray, PPOPP’06, http://chapel.cray.com/publications/ppopp06-slides.pdf

“{

21

MPI Reality

'52
53%’
S85
— N

: _ Tramonto
- Functional

v
e nn va

SRS AN

OIS

B

e Tvias e o
o SRS

. .)
e PRIt
- —

et s s Vo o

-

T s aeme s w4
teie

e et e e
i ..._.._—-""-.. e

.-
PRSPV,

B e]
=

P e b v
.-
S, e -

WJDC-DFT (Werthim, Jain, Dominik, and Chapman) theory for bonded systems. (S. Jain, A. Dominik, and W.G. Chapman.
Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J.
Chem. Phys., 127:244904, 2007.) Models stoichiometry constraints inherent to bonded systems.

How much MPI-specific code?

dft_fill_wjdc.c
MPI-specific
code

source_pp_g.f

s . SR 58 4T AW A LI A)

" .

-~
———y -

MFIX: Multiphase Flows with Interphase eXchanges

MFIX

pressure

(https://www.mfix.org/)

correction

Source term for

l

=
Reasons for MPIl Success?
« Portability? Yes.
e Standardized? Yes.
* Momentum? Yes.

« Separation of many
Parallel & Algorithms
concerns? Big Yes.

* Once framework in place:
— Sophisticated physics added as serial code.
— Ratio of science experts vs. parallel experts: 10:1.

« Key goal for new parallel apps: Preserve this ratio

Sandia
rll National
Laboratories

“{

Single Program Multiple Data (SPMD) 101

5=
2L
=35
—3

=
2D PDE on Regular Grid (Standard Laplace)

“{

2D PDE on Regular Grid (Helmholtz)

—Viu—ou=f (o = ()

=l
2D PDE on Regular Grid (4t Order Laplace)

_

More General Mesh and Partitioning

= il

SPMD Patterns for Domain Decomposition

» Halo Exchange:
— Conceptual.
— Needed for any partitioning, halo layers.
— MPI is simply portability layer.
— Could be replace by PGAS, one-sided, ...
* Collectives:
— Dot products, norms.
* All other programming:
— Sequential!!l

Sandia
m National
Laboratories

=
Computational Domain Expert Writing MPI Code

“{

Computational Domain Expert Writing Future
Parallel Code

“{

34

Evolving Parallel Programming Model

l

g
- Parallel Programming Model:
Multi-level/Multi-device

Inter-node/inter-device (distributed)

parallelism and resource management Message Passing

network of l
computational
nodes Node-local control flow (serial)
______________ $________________.
4)
Intra-node (manycore)
computational parallelism and resource Threading ‘
node with management
manycore CPUs _ J
and /or l
GPGPU Stateless computational kernels

stateless kernels |
run on each core

Sandia
Adapted from slide of H. Carter Edwards I"l National

35 Laboratories

—

Domain Scientist’s Parallel Palette

* MPI-only (SPMD) apps:
— Single parallel construct.
— Simultaneous execution.

— Parallelism of even the messiest serial code.

 MapReduce:

— Plug-n-Play data processing framework - 80% Google cycles.

* Pregel: Graph framework (other 20%)

* Next-generation PDE and related applications:

— Internode:
* MPI, yes, or something like it.
« Composed with intranode.
— Intranode:
* Much richer palette.
» More care required from programmer.

» What are the constructs in our new palette?

Sandia
National
Laboratories

l

Obvious Constructs/Concerns

* Parallel for:
forall (i, j) in domain {...}
— No loop-carried dependence.
— Rich loops.

— Use of shared memory for temporal reuse, efficient
device data transfers.

 Parallel reduce:
forall (i, j) in domain {
xnew(i, j) = ...;
delx+= abs(xnew(i, j) - xold(i,)));
}
— Couple with other computations.
— Concern for reproducibility.

Sandia
|I'| National

Laboratories

l

Other construct: Pipeline

» Sequence of filters.
« Each filter is:
— Sequential (grab element ID, enter global assembly) or
— Parallel (fill element stiffness matrix).
* Filters executed in sequence.
* Programmer’s concern:
— Determine (conceptually): Can filter execute in parallel?
— Write filter (serial code).
— Register it with the pipeline.
 Extensible:
— New physics feature.
— New filter added to pipeline.

Sandia
m National
Laboratories

TBB Pipeline for FE assembly

[Launch elem—data} [Compute stifftnesses } [Assemble rows of stiffness}
— —

from mesh & loads into global matrix
Serial Filter Parallel Filter Several Serial Filters in series
6 7 8 Each assembly filter assembles certain rows from a
FE Mesh / stiffness, then passes it on to the next assembly filter
E3 E4
3 4 3 \ 1
2 —>
El E2
5
0 1 2 4

o

7

Element-stiffness
matrices computed
in parallel

~N 00 WD ~

0N Nk W~ O

Sandia
National
Laboratories

Alternative
TBB Pipeline for FE assembly

Launch elem-data Compute stiffnesses Assemble rows of stiffness
from mesh - & loads - into global matrix

Serial Filter Parallel Filter Parallel Filter

0 Each parallel call to the assembly

6 7 8 . 1 \ filter assembles all rows from the
FE Mesh / 4 L stiffness, using locking to avoid
E3 E4 3 race conflicts with other threads.

El E2

Element-stiffness
matrices computed
in parallel

Sandia
|"|'| National
Laboratores

!

=

Base-line FE Assembly Timings

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows

The finite-element assembly performs 4096000 matrix-row sum-into
operations

(8 per element) and 4096000 vector-entry sum-into operations.

MPI-only, no threads. Linux dual quad-core workstation.

Assembly | Assembly

-time -time

Intel 111 |GCC 4.4.4
1 1.80s 1.95s
4 0.45s 0.50s
8 0.24s 0.28s

Sandia
rl'| National
Laboratores

!

2.5

1.5

0.5

_I;,' "l
FE Assembly Timings

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows

The finite-element assembly performs 4096000 matrix-row sum-into operations

(8 per element) and 4096000 vector-entry sum-into operations.

No MPI, only threads. Linux dual quad-core workstation.

0o 00 00 A DA BN A A A

0

0
95917
7938
3180
64536
5892
1618

oo »h =~ 00 DN =~ 00 b -~

Elem- Vector-
group conflicts
-size

0 0

0

0
959
25

4
1306
49

1

Assembly
-time

2.16s
2.09s
2.08s
1.01s
0.74s
0.69s
0.87s
0.45s
0.38s

Sandia
rl'| National
Laboratores

}/‘1

Other construct: Thread team

* Multiple threads.

 Fast barrier.

« Shared, fast access memory pool.

« Example: Nvidia SM

« X86 more vague, emerging more clearly in future.

Sandia
m National
Laboratories

—
——

o

Preconditioners for Scalable Multicore Systems

Percent Time

100%

80%

60%

40%

20%

0%

Charon Timing Breakdown on TLCC

Strong Scaling 28M Unknowns

128 256 512 1024 2048 4096

Procs

Charon minus solver

Solve time due to iter
increase

Solve time due to iter
cost

Preconditioner setup

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)

44

Iters

140
120
100

Linear Solver Iterations
per Newton Step

111 117 117 125 129

128 256 512 1024 2048 4096

153

Observe: lteration count increases with number of subdomains.

With scalable threaded smoothers (LU, ILU, Gauss-Seidel):

— Solve with fewer, larger subdomains.
— Better kernel scaling (threads vs. MPI processes).

— Better convergence, More robust.
Exascale Potential: Tiled, pipelined implementation.

Three efforts:

Level-scheduled triangular sweeps (ILU solve, Gauss-Seidel).

Decomposition by partitioning
Multithreaded direct factorization

MPI Ranks
4096 1 153
2048 2 129
1024 4 125
512 8 117
256 16 117
128 32 111

Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and
Michael A. Heroux and Erik G. Boman, VECPAR 2010.

Sandia
m National
Laboratories

“,‘1

Thread Team Advantanges

* Qualitatively better algorithm:
— Threaded triangular solve scales.

— Fewer MPI ranks means fewer iterations, better
robustness.

* Exploits:
— Shared data.

— Fast barrier.
— Data-driven parallelism.

Sandia
National
Laboratories

e
Finite Elements/Volumes/Differences
and parallel node constructs

« Parallel for, reduce, pipeline:
— Sufficient for vast majority of node level computation.

— Supports:
« Complex modeling expression.
 Vanilla parallelism.

— Must be “stencil-aware” for temporal locality.
* Thread team:

— Complicated.

— Requires true parallel algorithm knowledge.

— Useful in solvers.

Sandia
m National
Laboratories

“{

47

Programming Today for Tomorrow’s
Machines

Sandia
National
Laboratories

= il

Programming Today for Tomorrow’s Machines

 Parallel Programming in the small:
— Focus: writing sequential code fragments.
— Programmer skKills:
* 10%: Pattern/framework experts (domain-aware).
* 90%: Domain experts (pattern-aware)
» Languages needed are already here.
— Exception: Large-scale data-intensive graph?

Sandia
m National
Laboratories

1

=l
FE/FV/FD Parallel Programming Today

for ((i,j,k) in points/elements on subdomain) ({
compute coefficients for point (i,3],k)

inject into global matrix

}

Notes:

* User in charge of: : _ —
— Writing physics code. "4’%‘{!”"%%"“ 1{\ ’
— Iteration space traversal. ‘)"Qﬂ&%‘qﬁ'(ﬂ‘ Vmﬁ!“'ﬂ? ‘ J
at ORI £
— Storage association. ‘.‘.%g;vm'em}‘:;gﬁgmuﬁa»f.i;:'.:-‘:i',«g;&!*. o y s
. : , _ ‘y‘ R KOO » o A QVQ&
Pattern/framework/runtime in charge of: ’<) N, S
";“:‘#‘“ N TIANNNI O ,‘,‘,‘;" QN
— SPMD execution.)" ,

l

=
FE/FV/FD Parallel Programming Tomorrow

pipeline <i,j,k> {
filter (addPhysicsLayerl<i, j,k)>);
filter (addPhysicsLayern<i, j,k>);
filter(injectIntoGlobalMatrix<i,j,k>);

}

Notes:

* User in charge of: : -
— Writing physics code (filter). «!31\1“‘}(("' ;
Dl WD , _
— Registering filter with framework. ’ ‘\'QA%"%’!%"‘I%!"M' iy
 Pattern/framework/runtime in charge of:

AT U i
N i 40 i
VAV Gy s it
el
. 0 0 “ﬂ.t"“ YAV
— SPMD execution.

— lteration space traversal.
o Sensitive to temporal locality.
. . . ‘ iy
— Filter execution scheduling. DAVATA i
T ﬁi%ﬁﬂi ARORY
— Storage association. /
« Better assignment of responsibility (in general).

<]

0]
%

> gﬂ% S

‘&? 4 ;"i)
Eﬁ;ﬁ{«g‘«f A

Quiz (True or False)

. MPIl-only has the best parallel performance.
. Future parallel applications will not have MPI_Init().

. Use of “markup”, e.g., OpenMP pragmas, is the least
Intrusive approach to parallelizing a code.

. All future programmers will need to write parallel code.

Sandia
rll National
Laboratories

“{

52

Portable Multi/Manycore Programming
Trilinos/Kokkos Node API

== Generic Node Parallel Programming via C++
Template Metaprogramming

» Goal: Don't repeat yourself (DRY).

* Every parallel programming environment supports basic
patterns: parallel for, parallel _reduce.
— OpenMP:
#pragma omp parallel for
for (i=0; i<n; ++i) {y[i] += alpha*x]i];}
— Intel TBB:
parallel for(blocked range<int>(0, n, 100), loopRangeFn(...));

— CUDA:
loopBodyFn<<< nBlocks, blockSize >>> (...);

« How can we write code once for all these (and future)
environments?

Sandia
rll National
Laboratories

Tpetra and Kokkos

» Tpetra is an implementation of the Petra Object Model.

— Design is similar to Epetra, with appropriate deviation.

— Fundamental differences:
* heavily exploits templates
« utilizes hybrid (distributed + shared) parallelism via Kokkos Node API

» Kokkos is an API for shared-memory parallel nodes

— Provides parallel_for and parallel_reduce skeletons.

— Support shared memory APIs:
* ThreadPool Interface (TPI; Carter Edwards’s pthreads Trilinos package)
* Intel Threading Building Blocks (TBB)
« NVIDIA CUDA-capable GPUs (via Thrust)
* OpenMP (implemented by Radu Popescu/EPFL)

— o
- Generic Shared Memory Node

 Abstract inter-node comm provides DMP support.
* Need some way to portably handle SMP support.

 Goal: allow code, once written, to be run on any parallel
node, regardless of architecture.

» Difficulty #1: Many different memory architectures
— Node may have multiple, disjoint memory spaces.

— Optimal performance may require special memory
placement.

» Difficulty #2: Kernels must be tailored to architecture
— Implementation of optimal kernel will vary between archs
— No universal binary = need for separate compilation paths

* Practical goal: Cover 80% kernels with generic code.

Sandia
National
55 "‘ Laboratories

1

g
- Kokkos Node API

» Kokkos provides two main components:
— Kokkos memory model addresses Difficulty #1
« Allocation, deallocation and efficient access of memory
« compute buffer: special memory used for parallel computation
* New: Local Store Pointer and Buffer with size.
— Kokkos compute model addresses Difficulty #2

 Description of kernels for parallel execution on a node
* Provides stubs for common parallel work constructs
 Currently, parallel for loop and parallel reduce

* Code is developed around a polymorphic Node object.

« Supporting a new platform requires only the
implementation of a new node type.

Sandia
National
56 'I‘ Laboratories

1

==

Kokkos Memory Model

* A generic node model must at least:
— support the scenario involving distinct device memory
— allow efficient memory access under traditional scenarios

* Nodes provide the following memory routines:

ArrayRCP<T> Node:

void Node:

void Node:

ArrayRCP<T> Node:

void Node:

:allocBuffer<T>(size t sz);
:copyToBuffer<T>(T * src,

ArrayRCP<T> dest);

:copyFromBuffer<T> (ArrayRCP<T> src,

T * dest);

:viewBuffer<T> (ArrayRCP<T> buff);
:readyBuffer<T> (ArrayRCP<T> buff);

Sandia
National
Laboratories

1

=2 _
Kokkos Compute Model

* How to make shared-memory programming generic:

— Parallel reduction is the intersection of aot () and norn1 ()

— Parallel for loop is the intersection of axpy () and mat-vec

— We need a way of fusing kernels with these basic constructs.
« Template meta-programming is the answer.

— This is the same approach that Intel TBB and Thrust take.
— Has the effect of requiring that Tpetra objects be templated on Node type.

» Node provides generic parallel constructs, user fills in the rest:

template <class WDP> template <class WDP>

void Node::parallel for(WDP: :ReductionType Node::parallel reduce(
int beg, int end, WDP workdata); int beg, int end, WDP workdata);

Work-data pair (WDP) struct provides: Work-data pair (WDP) struct provides:

* loop body via WwpPp: :execute (1) » reduction type wDP: : ReductionType

* element generation via WDP: : generate (i)
* reduction via WDP: : reduce (x, V)

Qdliuid
National
s h

Laboratories

l

59

==

template <class WDP>

void

Node::parallel for(int beg, int end,
WDP workdata);

template <class T>
struct AxpyOp {

const T * x;

T *y;

T alpha, beta;

void execute(int i)
{ y[i] = alpha*x[i]
}s5

+ beta*y[i]; }

AxpyOp<double> op;

op.X = ...; op.alpha cee

op.y = ...; op.beta cee

node.parallel for< AxpyOp<double> >
(0, length, op);

template <class WDP>

WDP: :ReductionType

Node: :parallel reduce(int beg, int end,
WDP workdata);

template <class T>
struct DotOp {
typedef T ReductionType;
const T * x, * vy;
T identity()
T generate(int i)

{ return (T)0; }
{ return x[i]*y[i]; }

T reduce(T x, T y) { return x + y; }
}s5

DotOp<float> op;
Op.X = ...; Op.Y = ...;

float dot;

dot = node.parallel reduce< DotOp<float> >

(0, length, op);

th

Example Kernels: axpy () and dot ()

Sandia
National
Laboratories

‘(‘!

Compile-time Polymorphism
eria
Kernel
pthreac
—

Kokkos
functor

Sandia
rl'| National
Laboratores

1

==

Time (sec)

2.50E-04

2.00E-04

1.50E-04

1.00E-04

5.00E-05

0.00E+00

Kokkos Node API vs Native Implementation
Axpy, len=10K, float, int data

i float Kokkos init time

i float native init time =

float Kokkos sum time
i float native sum time

& int Kokkos init time

int native init time

int Kokkos sum time

int native sum time

.

SerialNode 10000 1

TBBNode 10000 1

TBBNode 10000 2 TPINode 10000 1 TPINode 100002 ThrustGPUNode 10000

1
Node Type, Prob Size, # Threads

Sandia
A Netional
Laboratories

Time (sec)

1.20E-03

1.00E-03

8.00E-04

6.00E-04

4.00E-04

2.00E-04

0.00E+00

Kokkos Node API vs Native Implementation
Axpy, len=1M

& float Kokkos init time
i float native init time

= float Kokkos sum time
i float native sum time

& int Kokkos init time —
“int native init time
“ int Kokkos sum time

“int native sum time

SerialNode 10000001 TBBNode 1000000 1 TBBNode 1000000 2 TPINode 1000000 1 TPINode 10000002 ThrustGPUNode 1000000
1

Node Type, Prob Size, # threads

Sandia

>

Kokkos Node API vs Native Implementation
Axpy, len=10M, float, int data

1.20E-02
i float Kokkos init time
1.00E-02 i float native init time —
= float Kokkos sum time
K float native sum time
8.00E-03 i int Kokkos init time
“int native init time
§ “int Kokkos sum time
g 6.00E-03 I int native sum time
=
4.00E-03
2.00E-03
0.00E+00
SerialNode 10000000 1 TBBNode 10000000 1 TBBNode 10000000 2 TPINode 100000001 TPINode 10000000 2 ThrustGPUNode
10000000 1
Node Type, Prob Size, # Threads
Sandia
A tetional
Laboratories

64
What’s the Big Deal about Vector-Vector Operations?

Examples from OOQP (Gertz, Wright)
v, <<y, +toxz, ,i=1l.n v, <y, /x, ,i=l.n

ymin _yi lfy, < ymin
V, =4y =y, ify, > y™ i=1.n
O ifymin Syl Symax

oc—{maxo :x+od =B}

Example from TRICE (Dennis, Heinkenschloss, Vicente)

(b—u),'"* if w, <0 and b, < +eo
g] 1 mw<Oandb =t Many different and unusual
l (u—a), = if w; 20 and a,.> —eo vector operations are needed
1 if w20 and g,.= —oo : . .
) by interior point methods for
Example from IPOPT (Waechter) optimization!
(U L
[xf +G;x)] it > &,
2 o | Currently in MOOCHO :
X € O ifx, <& i=l..n > 40 vector operations!
o ifx, > %"
where : B = minGiL +n(YiU —x)x + 5) Sandia
#”; = max G(l.L —n(tl.U —x")x" - 5) [“:&'}g?,'m

Tpetra RTI Components

 Set of stand-alone non-member methods:

— unary transform<UOP>(Vector &v, UOP op)
— binary transform<BOP>(Vector &vl, const Vector &v2, BOP op)
— reduce<G>(const Vector &vl, const Vector &v2, G op_glob)

— binary pre transform reduce<G>(Vector &vl,
const Vector &v2,
G op_glob)

* These are non-member methods of Tpetra::RTI which are
loosely coupled with Tpetra::MultiVector and Tpetra::Vector.

* Tpetra::RTl also provides Operator-wrappers:

— class KernelOp<..., Kernel > : Tpetra::Operator<...>
— class BinaryOp<...,BinaryOp> : Tpetra: :Operator<...>

Tpetra RTI Example

// isn’t this nicer than a bunch of typedefs?

auto &platform = Tpetra::DefaultPlatform::getDefaultPlatform() ;
auto comm = platform.getComm() ;

auto node = platform.getNode () ;

// create Map and some Vector objects
Tpetra::global size t numGlobalRows = ...;
auto map = createUniformContigMapWithNode<int,int>(numGlobalRows, comm, node) ;
const size_ t numLocalRows = map->getNodeNumElements () ;
auto x = Tpetra::createVector<float> (map),
y = Tpetra::createVector<float> (map) ;
auto z Tpetra: :createVector<double> (map),
w = Tpetra: :createVector<double> (map) ;

// parallel initialization of x[i] = 1.0 using C++-0x lambda function

Tpetra: :RTI: :unary transform(*x, []1 (float xi) {return 1.0£;});

// parallel initialization of y[i] = x[i]

Tpetra: :RTI::binary transform(*y, *x, [] (float, float xi) {return xi;});

// parallel y[i] = x[i] + y[i]

Tpetra: :RTI: :binary transform(*y, *x, std::plus<float>());

// parallel single precision dot(x,y)

fresult = Tpetra::RTI::reduce(*x, *y, reductionGlob<ZeroOp<float>>(
std: :multiplies<float>(),
std: :plus<float>()));

Future Node API Trends

* TBB provides very rich pattern-based API.

— It, or something very much like it, will provide environment
for sophisticated parallel patterns.

« Simple patterns: FutureNode may simply be OpenMP.
— OpenMP handles parallel_for, parallel_reduce fairly well.
— Deficiencies being addressed.

— Some evidence it can beat CUDA.

* OpenCL practically unusable?

— Functionally portable.
— Performance not.
— Breaks the DRY principle.

Sandia
m National
Laboratories

“{

68

Additional Benefits of Templates

SZ
5‘5%’
S85
— N

Multiprecision possibilities

* Tpetra is a templated version of the Petra distributed linear
algebra model in Trilinos.

— Objects are templated on the underlying data types:

MultiVector<scalar=double, local ordinal=int,

global ordinal=local ordinal> ..
CrsMatrix<scalar=double, local ordinal=int,

global ordinal=local ordinal> ..
— Examples:

MultiVector<double, int, long int> V;
CrsMatrix<float> A;

Speedup of float over double float double speedup
in Belos linear solver. 18 s 26 s 1.42x
Scalar float double silele- liae-

double double

_ Arbitrary precision solves
Solve time (s) 2.6 5.3 29.9 76.5

using Tpetra and Belos
Accuracy 10 1012 1024 1048 linear solver package

FP Accuracy Analysis:
FloatShadowDouble Datatype

class FloatShadowDouble { « Templates enable new
analysis capabilities

public:

FloatShadowDouble() { » Example: Float with
f=0.0f; “shadow” double.
d=0.0; }

FloatShadowDouble(const FloatShadowDouble & fd) {
f=fd.f;
d=fd.d; }

inline FloatShadowDouble operator+= (const FloatShadowDouble & fd) {
f +=fd.f;
d +=fd.d;
return *this; }

inline std::ostream& operator<<(std:.ostreamé& 0s, const FloatShadowDouble& fd) {
0s << fd.f << "f" << fd.d <<"d"; return os;}

FloatShadowDouble

Sample usage:

#include “FloatShadowDouble.hpp”

Tpetra::Vector<FloatShadowDouble> x, y;
Tpetra::CrsMatrix<FloatShadowDouble> A;

A.apply(x, y); // Single precision, but double results also computed, available

Initial Residual = 455.194f 455.194d
lteration = 15 Residual = 5.07328f 5.07618d
lteration = 30 Residual = 0.00147022f 0.00138466d
lteration =45 Residual = 5.14891e-06f 2.09624e-06d
lteration =60 Residual = 4.03386e-09f 7.91927e-10d

#ifndef TPETRA_POWER_METHOD_HPP
#define TPETRA_POWER_METHOD_HPP

#include <Tpetra_Operator.hpp>
#include <Tpetra_Vector.hpp>
#include <Teuchos_ScalarTraits.hpp>

namespace TpetraExamples {

[*% \brief Simple power iteration eigensolver for a Tpetra::Operator.
*/
template <class Scalar, class Ordinal>
Scalar powerMethod(const Teuchos::RCP<const Tpetra::Operator<Scalar,Ordinal> > &A,
int niters, typename Teuchos::ScalarTraits<Scalar>::magnitudeType tolerance,
bool verbose)
{
typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType Magnitude;
typedef Tpetra::Vector<Scalar,Ordinal> Vector;

if (A->getRangeMap() != A->getDomainMap()) {

throw std::runtime_error(" TpetraExamples::powerMethod(): operator must have domain and range maps that
are equivalent.");

}

/I create three vectors, fill z with random numbers
Teuchos::RCP<Vector> z, q, r;
q = Tpetra::createVector<Scalar>(A->getRangeMap());
r = Tpetra::createVector<Scalar>(A->getRangeMap());
z = Tpetra::createVector<Scalar>(A->getRangeMap());
z->randomize();
/l
Scalar lambda = 0.0;
Teuchos::ScalarTraits<Scalar>::magnitudeType normz, residual = 0.0;

/] power iteration
for (int iter = 0; iter < niters; ++iter) {
normz = z->norm2(); /I Compute 2-norm of 7
g->scale(1.0/normz, *z); /] Set q =z / normz
A->apply(*q, *z); /l Compute 7z = A*q
lambda = q->dot(*z); /l Approximate maximum eigenvalue: lamba = dot(q,z)

if (iter % 100 == 0 |l iter + 1 == niters) {
r->update(1.0, *z, -lambda, *q, 0.0); /I Compute A*q - lambda*q
residual = Teuchos::ScalarTraits<Scalar>::magnitude(r->norm2() / lambda);
if (verbose) {
std::cout << "Iter = " <<iter << " Lambda = " <<lambda
<< " Residual of A*q - lambda*q =" <<residual << std::endl; }
}
if (residual < tolerance) { break; }
} return lambda;

}

} /] end of namespace TpetraExamples

“{

74

Placement and Migration

Sandia
National
Laboratories

}/‘1

Placement and Migration

* MPI:
— Data/work placement clear.
— Migration explicit.
* Threading:
— It's a mess (IMHO).
— Some platforms good.
— Many not.
— Default is bad (but getting better).
— Some issues are intrinsic.

Sandia
National
Laboratories

Data Placement on NUMA

* Memory Intensive computations: Page placement has
huge impact.

» Most systems: First touch (except LWKSs).

 Application data objects:

— Phase 1: Construction phase, e.g., finite element
assembly.

— Phase 2: Use phase, e.g., linear solve.
* Problem: First touch difficult to control in phase 1.
* |dea: Page migration.

— Not new: SGI Origin. Many old papers on topic.

Sandia
National
76 "1 Laboratories

l

77

Data placement experiments

* MiniApp: HPCCG (Mantevo Project)
 Construct sparse linear system, solve with CG.
* Two modes:

— Data placed by assembly, not migrated for NUMA
— Data migrated using parallel access pattern of CG.

* Results on dual socket quad-core Nehalem system.

Sandia
rll National
Laboratories

l

b

78

Weak Scaling Problem

Weak Scaling
Dim 260K Per core

6000

5000

4000

3000

MFLOPS/s

2000

1000

cores

|

——MP|
-#-Non-conditioned

~#=Conditioned

= MPI and conditioned data approach comparable.

= Non-conditioned very poor scaling.

Sandia
National
Laboratories

l

Page Placement summary

* MPI1+OpenMP (or any threading approach) is best
overall.
 But:
— Data placement is big issue.
— Hard to control.
— Insufficient runtime support.
 Current work:
— Migrate on next-touch (MONT).
— Considered in OpenMP (next version).
— Also being studied in Kitten (Kevin Pedretti).

* Note: This phenomenon especially damaging to
OpenMP common usage.

Sandia
National
79 "1 Laboratories

“{

80

Resilient Algorithms:
A little reliability, please.

My Luxury in Life (wrt FT/Resilience)

The privilege to think of a computer as a
reliable, digital machine.

“At 8 nm process technology, it will be harder
totella1fromado.”

(W. Camp)

81 h

= il

Users’ View of the System Now

* “All nodes up and running.”

* Certainly nodes fail, but invisible to user.
* No need for me to be concerned.

« Someone else’s problem.

Sandia
National
82 'I‘ Laboratories

\

Users’ View of the System
Future

* Nodes in one of four states.

1. Dead.

2. Dying (perhaps producing faulty results).
3. Reviving.

4. Running properly:

a) Fully reliable or...
b) Maybe still producing an occasional bad result.

Sandia
rll National
Laboratories

83

Hard Error Futures

« C/R will continue as dominant approach:
— Global state to global file system OK for small systems.
— Large systems: State control will be localized, use SSD.
» Checkpoint-less restart:
— Requires full vertical HW/SW stack co-operation.
— Very challenging.
— Stratified research efforts not effective.

Sandia
rll National
Laboratories

\

Soft Error Futures

« Soft error handling: A legitimate algorithms issue.
* Programming model, runtime environment play role.

Sandia
m National
Laboratories

i\

86

Consider GMRES as an example of how soft
errors affect correctness

« Basic Steps

1)
2)
3)

4)
5)

Compute Krylov subspace (preconditioned sparse matrix-
vector multiplies)

Compute orthonormal basis for Krylov subspace (matrix
factorization)

Compute vector yielding minimum residual in subspace
(linear least squares)

Map to next iterate in the full space
Repeat until residual is sufficiently small

 More examples in Bronevetsky & Supinski, 2008

Sandia
m National
Laboratories

Why GMRES?

* Many apps are implicit.
* Most popular (nonsymmetric) linear solver is
preconditioned GMRES.

* Only small subset of calculations need to be
reliable.

— GMRES is iterative, but also direct.

Sandia
National
87 "1 Laboratories

- el
Every calculation matters

Soft Error Resilience

Description FLOPS | Recursive | Solution Error
Residual
Error

All Correct 343M 4.6e-15 1.0e-6
Calcs

lter=2, y[1] +=

1.0 35 343M 6.7e-15 3.7e+3

SpMV incorrect
Ortho subspace

Q[1][11+=1.0 N/C N/A 7.7e-02 5.9e+5
Non-ortho

subspace

« Small PDE Problem: ILUT/GMRES

e Correct result:35 lters, 343M
FLOPS

» 2 examples of a single bad op.

» Solvers:
— 50-90% of total app operations.
— Soft errors most likely in solver.

* Need new algorithms for soft errors:

— Well-conditioned wrt errors.
— Decay proportional to number of errors.
B8 — Minimal impact when no errors.

New Programming Model
Elements:

« SW-enabled, highly reliable:
« Data storage, paths.
« Compute regions.

ldea: New algorithms with
minimal usage of high reliability.

First new algorithm: FT-GMRES.
« Resilient to soft errors.
« Outer solve: Highly Reliable
* Inner solve: “bulk” reliability.

General approach applies to
many algorithms.

Sandia
M. Heroux, M. Hoemmen m {\Lal;cglg?tlj o
ratori

89

FTGMRES Results

Fault—-Tolerant GMRES, restarted GMRES, and nonrestarted GMRES
(deterministic faulty SpMVs in inner solves)

100 @ T T T T T I I I I
—— FT-GMRES(50,10)
GMRES(50), 10 restart cycles
—°— GMRES(500)
107°F .
— A - - e—9
107°F .
107°F .
10—8 | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11

Outer iteration number

— o

Quiz (True or False)

5. DRY is not possible across CPUs and GPUs.
6. Extended precision is too expensive to be useful.
/. Resilience will be built into algorithms.

Sandia
m National
Laboratories

“{

91

Bi-Modal: MPI-only and MPI+[X]Y|Z]

52
53%’
S85
— N

l

92

Parallel Machine Block Diagram

Node 0 Node 1
Memory Memory
Core O [Core n-1 Core O [Core n-1

— Parallel machine with p = m * n processors:

Node m-1

Memory

Core 0

Core n-1

* m = number of nodes.
* n = number of shared memory processors per node.

— Two ways to program:

« Way 1: p MPI processes.

« Way 2: m MPI processes with n threads per MPI process.

- New third way:
* “Way 1” in some parts of the execution (the app).
« “Way 2” in others (the solver).

Sandia
National
Laboratories

—

N
o
o

[
w
o

100

Time (sec)

0

Time (sec)
oo
o

93

=

Tramonto vs. Solver Time on Niagara2:
4-48 Threads

) “ Tramonto
50 g “ Solver

4 8 12 16 24 32 36 48
Threads

Charon vs Solver Time: 1-16 Cores

& Charon

“ Solver

1 4 8

Cores

12

16

Multicore Scaling: App vs. Solver

Application:
» Scales well

(sometimes superlinear)
* MPI-only sufficient.

Solver:

» Scales more poorly.

* Memory system-limited.
* MPIl+threads can help.

* Charon Results:

Lin & Shadid TLCC Report

Sandia
National
Laboratories

|
\

MPI-Only + MPI/Threading: Ax=b

l <«—— | App passes matrix and vector values to library data classes

All ranks store A, x, b data in memory visible to rank 0

App App App App
Rank 0 Rank 1 Rank 2 Rank 3
Lib Lib Lib Lib
Rank 0 Rank 1 Rank 2 Rank 3
Mem Mem Mem Mem
Rank 0 Rank 1 Rank 2 Rank 3

Multl%e “PNA%ayout /

Lib

Rank O

/ /

Thread 0 Thread 1 Thread 2 Thread 3

<4— | Library solves Ax=b using shared memory algorithms
on the node.

94

Sandia
National
Laboratories

MP| Shared Memory Allocation

Idea:

« Shared memory alloc/free
functions:
— MPI_Comm_alloc_mem
— MPI_Comm_free_mem

* Predefined communicators:
MPI_COMM_NODE - ranks on node
MPI_COMM_SOCKET — UMA ranks
MPI_COMM_NETWORK - inter node

» Status:

— Available in current development
branch of OpenMPI.

— First “Hello World” Program
works.

— Incorporation into standard still
not certain. Need to build case.

— Next Step: Demonstrate usage
with threaded triangular solve.

» Exascale potential:

— Incremental path to MPI+X.
— Dial-able SMP scope.

95

intn=...;
double* values;
MPI_Comm_alloc_mem(
MPI_COMM_NODE, // comm (SOCKET works too)

n*sizeof(double), // size in bytes

MPI_INFO_NULL, // placeholder for now

&values); // Pointer to shared array (out)
// At this point:

/I - All ranks on a node/socket have pointer to a shared buffer (values).
// - Can continue in MPI mode (using shared memory algorithms) or
// - Can quiet all but one:

int rank;

MPI_Comm_rank(MPI_COMM_NODE, &rank);

if (rank==0) { // Start threaded code segment, only on rank O of the node

MPI_Comm_free_mem(MPI_COMM_NODE, values);

Collaborators: B. Barrett, Brightwell, Wolf - SNL; Vallee, Koenig - ORNL ';l.'

Sandia
National
Laboratories

“{

Algorithms and Meta-Algorithms

5=
53%’
S85
— N

.~ ol

Communication-avoiding iterative methods

lterative Solvers:

Dominant cost of many apps (up to 80+% of runtime).

Exascale challenges for iterative solvers:

Collectives, synchronization.
Memory latency/BW.
Not viable on exascale systems in present forms.

Communication-avoiding (s-step) iterative solvers:

Idea: Perform s steps in bulk (s=5 or more):

+ stimes fewer synchronizations.

+ stimes fewer data transfers: Better latency/BW.
Problem: Numerical accuracy of orthogonalization.

New orthogonalization algorithm:

Tall Skinny QR factorization (TSQR).

Communicates less and more accurate
than previous approaches.

Enables reliable, efficient s-step methods.

TSQR Implementation:

2-level parallelism (Inter and intra node).
Memory hierarchy optimizations.

Flexible node-level scheduling via Intel Threading Building
Blocks.

Generic scalar data type: supports mixed and extended
precision.

Multicore Orthogonalization Performance
1Mx10 matrix, 8-core Nehalem, Intel Compilers

0.35

0.25

z .
.E otl; —— g ~-LAPACK QR
= 1 ~=MGS
0.05 TSQR
0
1 2 4 8
Number of Cores

LAPACK — Serial, MGS —Threaded modified Gram-Schmidt

TSQR capability:

« Critical for exascale solvers.

Part of the Trilinos scalable multicore
capabilities.

Helps all iterative solvers in Trilinos
(available to external libraries, too).

Staffing: Mark Hoemmen (lead, post-
doc, UC-Berkeley), M. Heroux

Part of Trilinos 10.6 release, Sep 2010.

Sandia
m National
Laboratories

1

=
Advanced Modeling and Simulation Capabilities:
Stability, Uncertainty and Optimization

e Promise: 10-1000 times increase in parallelism (or more).

. n
SPDESs: E"':“':“". [' Transient
: -. '. '.':. f ':- Lower Block 0
. w LTI | "x_ Bidiagonl _ ptimization:
| n n n " En am
n n | n an
n n] mER am
L n n n u mnm
| N n n | B] | am
u n n n L]] "
un n n n L] am
l. l. n n L]] = t
n— L L] -n 0
=..l- .l. .:- —= / Block
LI " e (mEm Trid |
= - [En '::- ri-diagona
un | n mEEn
- L) n LB B
u - mEEn
as = t L B} |
. . n Emm
:-‘- .l asn
n n " mEEn
. | EEn
L]] n LR)|
s " g
e et EH
» Pre-requisite: High-fidelity “forward” solve: e

— Computing families of solutions to similar problems. e T
— Differences in results must be meaningful.

Sandia
m - Size of a single forward problem "1 oboraores

1

R

Advanced Capabilities:
Readiness and Importance

K. Pierson

Modeling Area Sufficient Other concerns Advanced
Fidelity? capabilities priority
Seismic Yes. None as big. Top.
S. Collis, C. Ober
Shock & Multiphysics | Yes, but some Constitutive models, | Secondary now. Non-
(Alegra) concerns. material responses intrusive most
A. Robinson, C. Ober maturity. attractive.
Multiphysics Reacting flow w/ | Higher fidelity, more | Emerging, not top.
(Charon) simple transport, accurate multiphysics.
device w/ drift

J. Shadid diffusion, ...
Solid mechanics Yes, but... Better contact. Better | Not high for now.

timestepping. Failure
modeling.

Sandia
m National
Laboratories

l

=
Advanced Capabilities:

Other issues

* Non-intrusive algorithms (e.g., Dakota):

— Task level parallel:
» A true peta/exa scale problem?
* Needs a cluster of 1000 tera/peta scale nodes.

« Embedded/intrusive algorithms (e.g., Trilinos):

— Cost of code refactoring:
* Non-linear application becomes “subroutine”.
 Disruptive, pervasive design changes.
» Forward problem fidelity:
— Not uniformly available.
— Smoothness issues.
— Material responses.

Sandia
m National
Laboratories

|
\

Advanced Capabilities:
Derived Requirements

 Large-scale problem presents collections of related subproblems with
forward problem sizes.

. Linear Solverss Ax=b— AX = B, Ax' = bi, Ax' =b

— Krylov methods for multiple RHS, related systems.

i _ i
» Preconditioners: A = Ao +AA

— Preconditioners for related systems.
« Data structures/communication: pattern(A') = pattern(A’)

— Substantial graph data reuse.

Sandia
m National
Laboratories

"{

Accelerator-based Scalability Concerns

Global Scope Single Instruction Multiple
Thread (SIMT) is too Restrictive

Sandia
National
102 m Laboratories

“{

103

If FLOPS are free,
why are we making them cheaper?

Sandia

"{

Larry Wall:
Easy things should be easy, hard
things should be possible.

Why are we making easy things
easier and hard things impossible?

Sandia
National
104 m Laboratories

=
Explicit/SIMT vs. Implicit/Recursive Algorithms

A
Explicit/SIMT: :
0\ « Explicit formulations.
* Jacobi prec.
=
=
.:
=
S
7)) :: - - >
= -F- "
~d - - 0. . . .
@ - Implicit/Recursive:
= - - v .
i - * Implicit formulations.
* Multilevel prec.
>
Easy Hard

Problem Difficulty th PSLgEEEE?(I)ries

e
Problems with Accelerator-based Scalability

* Global SIMT is the only approach that really works well on GPUs, but:

— Many of our most robust algorithms have no apparent SIMT
replacement.

— Working on it, but a lot to do, and fundamental issues at play.
« SMs might be useful to break SIMT mold, but:

— Local store is way too small.

— No market reason to make it bigger.
* Could consider SIMT approaches, but:

— Broader apps community moving the other way:
+ Climate: Looking at implicit formulations.
« Embedded UQ: Coupled formulations.

 Accelerator-based apps at risk?
— Isolation from the broader app trends.
— Accelerators good, but in combination with strong multicore CPU.

Sandia
m National
Laboratories

l

=

Summary

Some app targets will change:

Advanced modeling and simulation: Gives a better answer.
Kernel set changes (including redundant computation).

Resilience requires an integrated strategy:

Most effort at the system/runtime level.

C/R (with localization) will continue at the app level.
Resilient algorithms will mitigate soft error impact.
Use of validation in solution hierarchy can help.

Building the next generation of parallel applications requires enabling
domain scientists:

Write sophisticated methods.
Do so with serial fragments.
Fragments hoisted into scalable, resilient fragment.

Success of manycore will require breaking out of global SIMT-only.

Sandia
m National
Laboratories

Quiz (True or False)

1. MPIl-only has the best parallel performance.
Future parallel applications will not have MPI_Init().

Use of “markup”, e.g., OpenMP pragmas, is the least
Intrusive approach to parallelizing a code.

All future programmers will need to write parallel code.

DRY is not possible across CPUs and GPUs

CUDA and OpenCL may be footnotes in computing history.
Extended precision is too expensive to be useful.
Resilience will be built into algorithms.

A solution with error bars complements architecture trends.
0.Global SIMT is sufficient parallelism for scientific computing.

Sandia
m National

Laboratories

W N

= © © N O O =

