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Quiz (True or False) 

1." MPI-only has the best parallel performance. 
2." Future parallel applications will not have MPI_Init(). 
3." Use of “markup”, e.g., OpenMP pragmas, is the least 

intrusive approach to parallelizing a code. 
4." All future programmers will need to write parallel code. 
5." DRY is not possible across CPUs and GPUs. 
6." CUDA and OpenCL will be footnotes in computing history. 
7." Extended precision is too expensive to be useful. 
8." Resilience will be built into algorithms. 
9." A solution with error bars complements architecture trends. 
10."Global SIMT is sufficient parallelism for scientific computing. 



Trilinos Background & Motivation 



Trilinos Contributors 



Evolving Trilinos Solution 
!" Trilinos1 is an evolving framework to address these challenges: 

"" Fundamental atomic unit is a package. 
"" Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages). 
"" Provides a common abstract solver API (Thyra package). 
"" Provides a ready-made package infrastructure: 

•" Source code management (git). 
•" Build tools (Cmake). 
•" Automated regression testing. 
•" Communication tools (mail lists, trac). 

"" Specifies requirements and suggested practices for package SQA. 
!" In general allows us to categorize efforts: 

"" Efforts best done at the Trilinos level (useful to most or all packages). 
"" Efforts best done at a package level (peculiar or important to a package). 
"" Allows package developers to focus only on things that are unique to  

their package. 

1. Trilinos loose translation: “A string of pearls” 



Transforming Computational Analysis To 
Support High Consequence Decisions 

Forward Analysis 

Accurate & Efficient Forward Analysis 

Robust Analysis with Parameter Sensitivities 

Optimization of Design/System 

Quantify Uncertainties/Systems Margins 

Optimization under Uncertainty 

Each stage requires greater performance and error control of prior stages:    
Always will need: more accurate and scalable methods.  

       more sophisticated tools. 

Systems of systems 



Trilinos Download History: 19525 Total 



Registered User by Region 



Registered Users by Type 



Ubuntu/Debian: Other sources 

maherou@jaguar13:/ccs/home/maherou> module avail trilinos 

------------------------------------------------ /opt/cray/modulefiles ------------------------------------------------- 
trilinos/10.0.1(default) trilinos/10.2.0 

------------------------------------------------- /sw/xt5/modulefiles -------------------------------------------------- 
trilinos/10.0.4 trilinos/10.2.2 trilinos/10.4.0 trilinos/8.0.3  trilinos/9.0.2 



Capability Leaders: 
Layer of Proactive Leadership 

!" Areas: 
"" Framework, Tools & Interfaces (J. Willenbring). 
"" Software Engineering Technologies and Integration (R. Bartlett). 
"" Discretizations (P. Bochev). 
"" Geometry, Meshing & Load Balancing (K. Devine). 
"" Scalable Linear Algebra (M. Heroux). 
"" Linear & Eigen Solvers (J. Hu). 
"" Nonlinear, Transient & Optimization Solvers (A. Salinger). 
"" Scalable I/O: (R. Oldfield) 

!" Each leader provides strategic direction across all Trilinos packages 
within area. 



Trilinos Package Summary 
Objective Package(s) 

Discretizations 
Meshing & Discretizations STKMesh, Intrepid, Pamgen, Sundance, ITAPS, Mesquite 

Time Integration Rythmos 

Methods 
Automatic Differentiation Sacado 

Mortar Methods Moertel 

Services 

Linear algebra objects Epetra, Jpetra, Tpetra, Kokkos 

Interfaces Thyra, Stratimikos, RTOp, FEI, Shards 

Load Balancing Zoltan, Isorropia 

“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika 

C++ utilities, I/O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx 

Solvers 

Iterative linear solvers AztecOO, Belos, Komplex 

Direct sparse linear solvers Amesos, Amesos2 

Direct dense linear solvers Epetra, Teuchos, Pliris 

Iterative eigenvalue solvers Anasazi, Rbgen 

ILU-type preconditioners AztecOO, IFPACK, Ifpack2 

Multilevel preconditioners ML, CLAPS 

Block preconditioners Meros, Teko 

Nonlinear system solvers NOX, LOCA 

Optimization (SAND) MOOCHO, Aristos, TriKota, Globipack, Optipack 

Stochastic PDEs Stokhos 



Observations and Strategies for Parallel 
Software Design 



Three Design Points 

•"Terascale Laptop:  Uninode-Manycore 

•"Petascale Deskside:  Multinode-Manycore  

•"Exascale Center:  Manynode-Manycore 



Basic Concerns: Trends, Manycore 

•"Stein’s Law: If a trend cannot 
continue, it will stop. 

Herbert Stein, chairman of the Council of 
Economic Advisers under Nixon and 
Ford. 

•" Trends at risk: 
–" Power. 
–" Single core performance. 
–"Node count. 
–"Memory size & BW. 
–"Concurrency expression in 

existing Programming 
Models. 

–"Resilience. 
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3D Grid Points with 27pt stencil 

Parallel CG Performance 512 Threads 
32 Nodes = 2.2GHz AMD 4sockets X 4cores 

p32 x t16 

p128 x t4 

p512 x t1 

Edwards: SAND2009-8196 
Trilinos ThreadPool Library v1.1.!

“Status Quo” ~ MPI-only!
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Strong Scaling Potential!



Observations 

•"MPI-Only is not sufficient, except … much of the time. 
•"Near-to-medium term: 

–"MPI+[OMP|TBB|Pthreads|CUDA|OCL|MPI] 
–" Long term, too? 

•"Concern: 
–" Best hybrid performance: 1 MPI rank per UMA core set. 
–"UMA core set size growing slowly # Lots of MPI tasks. 

•" Long- term: 
–" Something hierarchical, global in scope. 

•"Conjecture:  
–"Data-intensive apps need non-SPDM model. 
–"Will develop new programming model/env. 
–"Rest of apps will adopt over time. 
–" Time span: 10-20 years. 



What Can we Do Right Now? 

•"Study why MPI was successful. 
•"Study new parallel landscape. 
•"Try to cultivate an approach similar to MPI (and 
others). 



MPI Impresssions 
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parallel computing, …”!
Brad Chamberlain, Cray, 2000.!
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3D Stencil in NAS MG

subroutine comm3(u,n1,n2,n3,kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer n1, n2, n3, kk
double precision u(n1,n2,n3)
integer axis

if( .not. dead(kk) )then
do  axis = 1, 3

if( nprocs .ne. 1) then
call sync_all()
call give3( axis, +1, u, n1, n2, n3, kk 

)
call give3( axis, -1, u, n1, n2, n3, kk 

)
call sync_all()
call take3( axis, -1, u, n1, n2, n3 )
call take3( axis, +1, u, n1, n2, n3 )

else
call comm1p( axis, u, n1, n2, n3, kk )

endif
enddo

else
do  axis = 1, 3

call sync_all()
call sync_all()

enddo
call zero3(u,n1,n2,n3)

endif
return
end

subroutine give3( axis, dir, u, n1, n2, n3, k )
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3, k, ierr
double precision u( n1, n2, n3 )

integer i3, i2, i1, buff_len,buff_id

buff_id = 2 + dir 
buff_len = 0

if( axis .eq.  1 )then
if( dir .eq. -1 )then

do  i3=2,n3-1
do  i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len,buff_id ) = u( 2,  

i2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] 
=

>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) then

do  i3=2,n3-1
do  i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( n1-1, 

i2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] 
=

>      buff(1:buff_len,buff_id)

endif
endif

if( axis .eq.  2 )then
if( dir .eq. -1 )then

do  i3=2,n3-1
do  i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( i1,  

2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] 
=

>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) then

do  i3=2,n3-1
do  i1=1,n1

buff_len = buff_len + 1
buff(buff_len,  buff_id )= u( i1,n2-

1,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] 
=

>      buff(1:buff_len,buff_id)

endif
endif

if( axis .eq.  3 )then
if( dir .eq. -1 )then

do  i2=1,n2
do  i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( 

i1,i2,2)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] 
=

>      buff(1:buff_len,buff_id)

else if( dir .eq. +1 ) then

do  i2=1,n2
do  i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( 

i1,i2,n3-1)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] 
=

>      buff(1:buff_len,buff_id)

endif
endif

return
end

subroutine take3( axis, dir, u, n1, n2, n3 )
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u( n1, n2, n3 )

integer buff_id, indx

integer i3, i2, i1

buff_id = 3 + dir
indx = 0

if( axis .eq.  1 )then
if( dir .eq. -1 )then

do  i3=2,n3-1
do  i2=2,n2-1

indx = indx + 1

u(n1,i2,i3) = buff(indx, buff_id )
enddo

enddo

else if( dir .eq. +1 ) then

do  i3=2,n3-1
do  i2=2,n2-1

indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id )

enddo
enddo

endif
endif

if( axis .eq.  2 )then
if( dir .eq. -1 )then

do  i3=2,n3-1
do  i1=1,n1

indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id )

enddo
enddo

else if( dir .eq. +1 ) then

do  i3=2,n3-1
do  i1=1,n1

indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id )

enddo
enddo

endif
endif

if( axis .eq.  3 )then
if( dir .eq. -1 )then

do  i2=1,n2
do  i1=1,n1

indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id )

enddo
enddo

else if( dir .eq. +1 ) then

do  i2=1,n2
do  i1=1,n1

indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id )

enddo
enddo

endif
endif

return
end

subroutine comm1p( axis, u, n1, n2, n3, kk )
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u( n1, n2, n3 )

integer i3, i2, i1, buff_len,buff_id
integer i, kk, indx

dir = -1

buff_id = 3 + dir
buff_len = nm2

do  i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 3 + dir
buff_len = nm2

do  i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 2 + dir 
buff_len = 0

if( axis .eq.  1 )then
do  i3=2,n3-1

do  i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( n1-1, 

i2,i3)
enddo

enddo
endif

if( axis .eq.  2 )then
do  i3=2,n3-1

do  i1=1,n1
buff_len = buff_len + 1
buff(buff_len,  buff_id )= u( i1,n2-

1,i3)
enddo

enddo
endif

if( axis .eq.  3 )then
do  i2=1,n2

do  i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( i1,i2,n3-

1)
enddo

enddo
endif

dir = -1

buff_id = 2 + dir 
buff_len = 0

if( axis .eq.  1 )then
do  i3=2,n3-1

do  i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len,buff_id ) = u( 2,  i2,i3)

enddo
enddo

endif

if( axis .eq.  2 )then
do  i3=2,n3-1

do  i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( i1,  

2,i3)
enddo

enddo
endif

if( axis .eq.  3 )then
do  i2=1,n2

do  i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id ) = u( i1,i2,2)

enddo
enddo

endif

do  i=1,nm2
buff(i,4) = buff(i,3)
buff(i,2) = buff(i,1)

enddo

dir = -1

buff_id = 3 + dir
indx = 0

if( axis .eq.  1 )then
do  i3=2,n3-1

do  i2=2,n2-1
indx = indx + 1
u(n1,i2,i3) = buff(indx, buff_id )

enddo
enddo

endif

if( axis .eq.  2 )then
do  i3=2,n3-1

do  i1=1,n1
indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id )

enddo
enddo

endif

if( axis .eq.  3 )then
do  i2=1,n2

do  i1=1,n1
indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id )

enddo
enddo

endif

dir = +1

buff_id = 3 + dir
indx = 0

if( axis .eq.  1 )then
do  i3=2,n3-1

do  i2=2,n2-1
indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id )

enddo
enddo

endif

if( axis .eq.  2 )then
do  i3=2,n3-1

do  i1=1,n1
indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id )

enddo
enddo

endif

if( axis .eq.  3 )then
do  i2=1,n2

do  i1=1,n1
indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id )

enddo
enddo

endif

return
end

param coeff: domain(1) = [0..3];
param Stencil: domain(3) = [-1..1, -1..1, -1..1];

function rprj3(S, R) {

param w: [coeff] float
= (/0.5, 0.25, 0.125, 0.0625/);

param w3d: [(i,j,k) in Stencil] float
= w((i!=0) + (j!=0) + (k!=0));

const SD = S.Domain,

Rstr = R.stride;

S = [ijk in SD] sum reduce

[off in Stencil]

(w3d(off) * R(ijk + Rstr*off));

}

Brad Chamberlain, Cray, PPOPP’06, http://chapel.cray.com/publications/ppopp06-slides.pdf!



MPI Reality 
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Tramonto 
WJDC 

Functional 

•" New functional. 
•" Bonded systems. 
•" 552 lines C code. 

WJDC-DFT (Werthim, Jain, Dominik, and Chapman) theory for bonded systems. (S. Jain, A. Dominik, and W.G. Chapman. 
Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J. 
Chem. Phys., 127:244904, 2007.) Models stoichiometry constraints inherent to bonded systems. !

How much MPI-specific code?!

dft_fill_wjdc.c!



dft_fill_wjdc.c 
MPI-specific 

code 



MFIX  
Source term for 

pressure 
correction 

•" MPI-callable, OpenMP-enabled. 
•" 340 Fortran lines. 
•" No MPI-specific code. 
•" Ubiquitous OpenMP markup 

(red regions). 

MFIX: Multiphase Flows with Interphase eXchanges (https://www.mfix.org/)!

source_pp_g.f!



Reasons for MPI Success? 

•"Portability?   Yes. 
•"Standardized?   Yes. 
•"Momentum?   Yes. 
•"Separation of many  
Parallel & Algorithms  
concerns?   Big Yes. 

•"Once framework in place: 
–"Sophisticated physics added as serial code. 
–"Ratio of science experts vs. parallel experts: 10:1. 

•"Key goal for new parallel apps: Preserve this ratio 



Single Program Multiple Data (SPMD) 101 



2D PDE on Regular Grid (Standard Laplace) 



2D PDE on Regular Grid (Helmholtz) 



2D PDE on Regular Grid (4th Order Laplace) 



More General Mesh and Partitioning 



SPMD Patterns for Domain Decomposition 

•"Halo Exchange: 
–"Conceptual. 
–"Needed for any partitioning, halo layers. 
–"MPI is simply portability layer. 
–"Could be replace by PGAS, one-sided, … 

•"Collectives: 
–"Dot products, norms. 

•"All other programming: 
–"Sequential!!! 



Computational Domain Expert Writing MPI Code 



Computational Domain Expert Writing Future 
Parallel Code 



Evolving Parallel Programming Model 

34 



Parallel Programming Model:  
Multi-level/Multi-device 

Stateless computational kernels!
run on each core!

Intra-node (manycore) 
parallelism and resource 

management!

Node-local control flow (serial)!

Inter-node/inter-device (distributed) 
parallelism and resource management!

Threading!

Message Passing!

stateless kernels!

computational 
node with 

manycore CPUs!
and / or!
GPGPU!

network of 
computational 

nodes!

35 Adapted from slide of H. Carter Edwards!



Domain Scientist’s Parallel Palette 
•"MPI-only (SPMD) apps: 

–" Single parallel construct. 
–" Simultaneous execution. 
–" Parallelism of even the messiest serial code. 

•"MapReduce:  
–" Plug-n-Play data processing framework - 80% Google cycles. 

•"Pregel: Graph framework (other 20%) 
•"Next-generation PDE and related applications: 

–" Internode: 
•" MPI, yes, or something like it. 
•" Composed with intranode. 

–" Intranode:  
•" Much richer palette. 
•" More care required from programmer. 

•"What are the constructs in our new palette? 



Obvious Constructs/Concerns 

•"Parallel for: 
 forall (i, j) in domain {…} 
–"No loop-carried dependence. 
–"Rich loops. 
–"Use of shared memory for temporal reuse, efficient 

device data transfers. 
•"Parallel reduce: 
forall (i, j) in domain { 

 xnew(i, j) = …; 
  delx+= abs(xnew(i, j) - xold(i, j)); 
} 
–"Couple with other computations. 
–"Concern for reproducibility. 



Other construct: Pipeline 

•"Sequence of filters. 
•"Each filter is: 

–"Sequential (grab element ID, enter global assembly) or  
–"Parallel (fill element stiffness matrix). 

•"Filters executed in sequence. 
•"Programmer’s concern: 

–"Determine (conceptually): Can filter execute in parallel? 
–"Write filter (serial code). 
–"Register it with the pipeline. 

•"Extensible: 
–"New physics feature. 
–"New filter added to pipeline. 
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TBB Pipeline for FE assembly 

FE Mesh 

Element-stiffness 
matrices computed 

in parallel 

Launch elem-data 
from mesh 

Compute stiffnesses 
& loads 

Assemble rows of stiffness 
into global matrix 

Serial Filter Parallel Filter Several Serial Filters in series 

Each assembly filter assembles certain rows from a 
stiffness, then passes it on to the next assembly filter 
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Each parallel call to the assembly 
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race conflicts with other threads. 
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Base-line FE Assembly Timings 

Num-
procs 

Assembly
-time 
Intel 11.1 

Assembly
-time 
GCC 4.4.4 

1 1.80s 1.95s 

4 0.45s 0.50s 

8 0.24s 0.28s 

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows 
The finite-element assembly performs 4096000 matrix-row sum-into 
operations 
(8 per element) and 4096000 vector-entry sum-into operations. 

MPI-only,  no threads. Linux dual quad-core workstation. 



FE Assembly Timings 

Num-
threads 

Elem-
group
-size 

Matrix-
conflicts 

Vector-
conflicts 

Assembly
-time 

1 1 0 0 2.16s 

1 4 0 0 2.09s 

1 8 0 0 2.08s 

4 1 95917 959 1.01s 

4 4 7938 25 0.74s 

4 8 3180 4 0.69s 

8 1 64536 1306 0.87s 

8 4 5892 49 0.45s 

8 8 1618 1 0.38s 

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows 
The finite-element assembly performs 4096000 matrix-row sum-into operations 
(8 per element) and 4096000 vector-entry sum-into operations. 

No MPI, only threads. Linux dual quad-core workstation. 
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Other construct: Thread team 

•"Multiple threads. 
•"Fast barrier. 
•"Shared, fast access memory pool. 
•"Example: Nvidia SM 
•"X86 more vague, emerging more clearly in future.  



•" Observe: Iteration count increases with number of subdomains. 
•" With scalable threaded smoothers (LU, ILU, Gauss-Seidel): 

–" Solve with fewer, larger subdomains. 
–" Better kernel scaling (threads vs. MPI processes). 
–" Better convergence, More robust. 

•" Exascale Potential: Tiled, pipelined implementation. 
•" Three efforts: 

–" Level-scheduled triangular sweeps (ILU solve, Gauss-Seidel). 
–" Decomposition by partitioning 
–" Multithreaded direct factorization 

Preconditioners for Scalable Multicore Systems 

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)!

MPI 
Tasks Threads Iterations 

4096 1 153 

2048 2 129 

1024 4 125 

512 8 117 

256 16 117 

128 32 111 

44 
Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and "
Michael A. Heroux and Erik G. Boman, VECPAR 2010.!

# MPI Ranks!



Thread Team Advantanges 

•"Qualitatively better algorithm: 
–"Threaded triangular solve scales. 
–"Fewer MPI ranks means fewer iterations, better 

robustness. 
•"Exploits: 

–"Shared data. 
–"Fast barrier. 
–"Data-driven parallelism. 



Finite Elements/Volumes/Differences 
and parallel node constructs 

•"Parallel for, reduce, pipeline: 
–"Sufficient for vast majority of node level computation. 
–"Supports: 

•"Complex modeling expression. 
•"Vanilla parallelism. 

–"Must be “stencil-aware” for temporal locality. 
•"Thread team: 

–"Complicated. 
–"Requires true parallel algorithm knowledge. 
–"Useful in solvers. 



Programming Today for Tomorrow’s 
Machines 
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Programming Today for Tomorrow’s Machines 

•"Parallel Programming in the small: 
–"Focus: writing sequential code fragments. 
–"Programmer skills: 

•" 10%: Pattern/framework experts (domain-aware). 
•" 90%: Domain experts (pattern-aware) 

•"Languages needed are already here. 
–"Exception: Large-scale data-intensive graph? 



FE/FV/FD Parallel Programming Today 

for ((i,j,k) in points/elements on subdomain) {!
!compute coefficients for point (i,j,k)!
!inject into global matrix!
 }!

Notes: 
•" User in charge of: 

–" Writing physics code. 
–" Iteration space traversal. 
–" Storage association. 

•" Pattern/framework/runtime in charge of: 
–" SPMD execution. 



FE/FV/FD Parallel Programming Tomorrow 

pipeline <i,j,k> {!
  filter(addPhysicsLayer1<i,j,k)>);!
! ...!
  filter(addPhysicsLayern<i,j,k>);!
! filter(injectIntoGlobalMatrix<i,j,k>);!
 }!

Notes: 
•" User in charge of: 

–" Writing physics code (filter). 
–" Registering filter with framework. 

•" Pattern/framework/runtime in charge of: 
–" SPMD execution. 
–" Iteration space traversal. 

o" Sensitive to temporal locality. 
–" Filter execution scheduling. 
–" Storage association. 

•" Better assignment of responsibility (in general). 



Quiz (True or False) 

1." MPI-only has the best parallel performance. 
2." Future parallel applications will not have MPI_Init(). 
3." Use of “markup”, e.g., OpenMP pragmas, is the least 

intrusive approach to parallelizing a code. 
4." All future programmers will need to write parallel code. 



Portable Multi/Manycore Programming 
Trilinos/Kokkos Node API 
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Generic Node Parallel Programming via C++ 
Template Metaprogramming 

•"Goal: Don’t repeat yourself (DRY). 
•"Every parallel programming environment supports basic 
patterns: parallel_for, parallel_reduce. 
–"OpenMP: 

#pragma omp parallel for 
for (i=0; i<n; ++i) {y[i] += alpha*x[i];} 

–" Intel TBB: 
parallel_for(blocked_range<int>(0, n, 100), loopRangeFn(…)); 

–"CUDA: 
loopBodyFn<<< nBlocks, blockSize >>> (…); 

•"How can we write code once for all these (and future) 
environments? 



Tpetra and Kokkos 

•" Tpetra is an implementation of the Petra Object Model. 
–" Design is similar to Epetra, with appropriate deviation. 
–" Fundamental differences: 
•" heavily exploits templates 
•" utilizes hybrid (distributed + shared) parallelism via Kokkos Node API 

•"Kokkos is an API for shared-memory parallel nodes 
–" Provides parallel_for and parallel_reduce skeletons. 
–" Support shared memory APIs: 
•" ThreadPool Interface (TPI; Carter Edwards’s pthreads Trilinos package) 
•" Intel Threading Building Blocks (TBB) 
•" NVIDIA CUDA-capable GPUs (via Thrust) 
•" OpenMP (implemented by Radu Popescu/EPFL) 



Generic Shared Memory Node 

•"Abstract inter-node comm provides DMP support. 
•"Need some way to portably handle SMP support. 
•"Goal: allow code, once written, to be run on any parallel 
node, regardless of architecture. 
•"Difficulty #1: Many different memory architectures 

–"Node may have multiple, disjoint memory spaces. 
–"Optimal performance may require special memory 

placement. 
•"Difficulty #2: Kernels must be tailored to architecture 

–" Implementation of optimal kernel will vary between archs 
–"No universal binary # need for separate compilation paths 

•"Practical goal: Cover 80% kernels with generic code. 
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Kokkos Node API 

•"Kokkos provides two main components: 
–"Kokkos memory model addresses Difficulty #1 

•"Allocation, deallocation and efficient access of memory 
•" compute buffer: special memory used for parallel computation 
•"New: Local Store Pointer and Buffer with size. 

–"Kokkos compute model addresses Difficulty #2 
•"Description of kernels for parallel execution on a node 
•"Provides stubs for common parallel work constructs 
•"Currently, parallel for loop and parallel reduce 

•"Code is developed around a polymorphic Node object. 
•"Supporting a new platform requires only the 
implementation of a new node type. 
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Kokkos Memory Model 

•"A generic node model must at least: 
–"support the scenario involving distinct device memory 
–"allow efficient memory access under traditional scenarios 

•"Nodes provide the following memory routines: 
 ArrayRCP<T> Node::allocBuffer<T>(size_t sz); 

 void        Node::copyToBuffer<T>(  T * src, 

                                     ArrayRCP<T>  dest); 
 void        Node::copyFromBuffer<T>(ArrayRCP<T> src, 

                                     T * dest); 

 ArrayRCP<T> Node::viewBuffer<T> (ArrayRCP<T> buff); 

 void        Node::readyBuffer<T>(ArrayRCP<T> buff); 



Kokkos Compute Model 

•" How to make shared-memory programming generic: 
–" Parallel reduction is the intersection of dot() and norm1() 
–" Parallel for loop is the intersection of axpy() and mat-vec 
–" We need a way of fusing kernels with these basic constructs. 

•" Template meta-programming is the answer. 
–" This is the same approach that Intel TBB and Thrust take. 
–" Has the effect of requiring that Tpetra objects be templated on Node type. 

•" Node provides generic parallel constructs, user fills in the rest: 

!"#$%&!"'()%&**'+,-.''
/012'302"44$&5&%%"%67058'
''19!':";<'19!'"92<'+,-'=05>2&!&?@'

!"#$%&!"'()%&**'+,-.'
+,-44A"2B)!109CD$"'302"44$&5&%%"%65"2B)"8'
''19!':";<'19!'"92<'+,-'=05>2&!&?@'

Work-data pair (WDP) struct provides: 
•" loop body via WDP::execute(i) 

Work-data pair (WDP) struct provides: 
•" reduction type WDP::ReductionType 
•" element generation via WDP::generate(i) 
•" reduction via WDP::reduce(x,y) 
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Example Kernels: axpy() and dot()!

!"#$%&!"'()%&**'+,-.'
/012''
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Compile-time Polymorphism 

Kokkos 
functor 
(e.g., 
AxpyOp) 

Serial 
Kernel 

+SerialNode pthread
Kernel 

+TpiNode 
Thrust 
Kernel +ThrustNode 

Future 
Kernel 

+FutureNode 

. . .!
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What’s the Big Deal about Vector-Vector Operations? 

Examples from OOQP (Gertz, Wright) 

Example from TRICE (Dennis, Heinkenschloss, Vicente) 

Example from IPOPT (Waechter) 

Currently in MOOCHO : 
   > 40 vector operations! 

Many different and unusual 
vector operations are needed 
by interior point methods for 
optimization! 



Tpetra RTI Components 

•"Set of stand-alone non-member methods: 
–" unary_transform<UOP>(Vector &v, UOP op) 
–" binary_transform<BOP>(Vector &v1, const Vector &v2, BOP op) 
–" reduce<G>(const Vector &v1, const Vector &v2, G op_glob) 
–" binary_pre_transform_reduce<G>( Vector &v1,  

                                const Vector &v2,  
                                G op_glob) 

•" These are non-member methods of Tpetra::RTI which are 
loosely coupled with Tpetra::MultiVector and Tpetra::Vector. 
•" Tpetra::RTI also provides Operator-wrappers: 

–" class KernelOp<..., Kernel > : Tpetra::Operator<...> 
–" class BinaryOp<...,BinaryOp> : Tpetra::Operator<...> 



Tpetra RTI Example 

// isn’t this nicer than a bunch of typedefs? 
auto &platform = Tpetra::DefaultPlatform::getDefaultPlatform(); 
auto comm = platform.getComm(); 
auto node = platform.getNode(); 

// create Map and some Vector objects 
Tpetra::global_size_t numGlobalRows = ...; 
auto map = createUniformContigMapWithNode<int,int>(numGlobalRows, comm, node); 
const size_t numLocalRows = map->getNodeNumElements(); 
auto x = Tpetra::createVector<float>(map), 
     y = Tpetra::createVector<float>(map); 
auto z = Tpetra::createVector<double>(map), 
     w = Tpetra::createVector<double>(map); 

// parallel initialization of x[i] = 1.0 using C++-0x lambda function 
Tpetra::RTI::unary_transform(  *x,     [](float xi){return 1.0f;} ); 
// parallel initialization of y[i] = x[i] 
Tpetra::RTI::binary_transform( *y, *x, [](float, float xi) {return xi;} ); 
// parallel y[i] = x[i] + y[i] 
Tpetra::RTI::binary_transform( *y, *x, std::plus<float>() ); 
// parallel single precision dot(x,y) 
fresult = Tpetra::RTI::reduce( *x, *y, reductionGlob<ZeroOp<float>>(                                 
                                                     std::multiplies<float>(),  
                                                     std::plus<float>() )); 



Future Node API Trends 

•"TBB provides very rich pattern-based API. 
–" It, or something very much like it, will provide environment 

for sophisticated parallel patterns. 
•"Simple patterns: FutureNode may simply be OpenMP. 

–"OpenMP handles parallel_for, parallel_reduce fairly well. 
–"Deficiencies being addressed. 
–"Some evidence it can beat CUDA. 

•"OpenCL practically unusable? 
–"Functionally portable. 
–"Performance not. 
–"Breaks the DRY principle. 



Additional Benefits of Templates 
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•" Tpetra is a templated version of the Petra distributed linear 
algebra model in Trilinos. 
–" Objects are templated on the underlying data types: 

MultiVector<scalar=double, local_ordinal=int, !
! ! !   global_ordinal=local_ordinal> …"

CrsMatrix<scalar=double, local_ordinal=int, !
! ! !   global_ordinal=local_ordinal> …!

–" Examples: 
MultiVector<double, int, long int> V;"
CrsMatrix<float> A;!

)*+,-./012134&-322151+1,/2 &&

607+7.& 8379& :3*5+/&
:3*5+/;
:3*5+/&

<*7:;
:3*5+/&

63+=/&,>/&?2@& AB'& %BC& ADBD& ('B%&

E00*.70F& !$;'& !$;!A& !$;AG& !$;GH&

Arbitrary precision solves  
using Tpetra and Belos  
linear solver package 

Speedup of float over double 
in Belos linear solver. 

float double speedup 
18 s 26 s 1.42x 



class FloatShadowDouble { 

public: 
  FloatShadowDouble( ) { 
    f = 0.0f; 
    d = 0.0;  } 
  FloatShadowDouble( const FloatShadowDouble & fd) { 
    f = fd.f; 
    d = fd.d;  } 
… 
inline FloatShadowDouble operator+= (const FloatShadowDouble & fd ) { 
    f += fd.f; 
    d += fd.d; 
    return *this;  } 
… 
inline std::ostream& operator<<(std::ostream& os, const FloatShadowDouble& fd) { 
  os << fd.f << "f " << fd.d << "d”;  return os;} 

IJ&E00*.70F&E47+F212K&&&
I+3796L7:3MN3*5+/&N7979F-/&

•" Templates enable new 
analysis capabilities 

•" Example: Float with 
“shadow” double. 



I+3796L7:3MN3*5+/&

Initial Residual =               455.194f         455.194d 
Iteration = 15   Residual = 5.07328f         5.07618d 
Iteration = 30   Residual = 0.00147022f   0.00138466d 
Iteration = 45   Residual = 5.14891e-06f  2.09624e-06d 
Iteration = 60   Residual = 4.03386e-09f  7.91927e-10d 

Sample usage: 
#include “FloatShadowDouble.hpp” 
Tpetra::Vector<FloatShadowDouble> x, y; 
Tpetra::CrsMatrix<FloatShadowDouble> A; 
A.apply(x, y);  // Single precision, but double results also computed, available 



#ifndef TPETRA_POWER_METHOD_HPP!
#define TPETRA_POWER_METHOD_HPP!

#include <Tpetra_Operator.hpp>!
#include <Tpetra_Vector.hpp>!
#include <Teuchos_ScalarTraits.hpp>!

namespace TpetraExamples {!

  /** \brief Simple power iteration eigensolver for a Tpetra::Operator.!
   */!
  template <class Scalar, class Ordinal>!
  Scalar powerMethod(const Teuchos::RCP<const Tpetra::Operator<Scalar,Ordinal> > &A, !

! !int niters, typename Teuchos::ScalarTraits<Scalar>::magnitudeType tolerance, !
! !bool verbose)!

  {!
    typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType Magnitude;!
    typedef Tpetra::Vector<Scalar,Ordinal> Vector;!

    if ( A->getRangeMap() != A->getDomainMap() ) {!
      throw std::runtime_error("TpetraExamples::powerMethod(): operator must have domain and range maps that 
are equivalent.");!
    }!



// create three vectors, fill z with random numbers!
    Teuchos::RCP<Vector> z, q, r;!
    q = Tpetra::createVector<Scalar>(A->getRangeMap());!
    r = Tpetra::createVector<Scalar>(A->getRangeMap());!
    z = Tpetra::createVector<Scalar>(A->getRangeMap());!
    z->randomize();!
    //!
    Scalar lambda = 0.0;!
    Teuchos::ScalarTraits<Scalar>::magnitudeType normz, residual = 0.0;!
    // power iteration!
    for (int iter = 0; iter < niters; ++iter) {!
      normz = z->norm2();                             // Compute 2-norm of z!
      q->scale(1.0/normz, *z);                        // Set q = z / normz!
      A->apply(*q, *z);                               // Compute z = A*q!
      lambda = q->dot(*z);                            // Approximate maximum eigenvalue: lamba = dot(q,z)!
      if ( iter % 100 == 0 || iter + 1 == niters ) {!
        r->update(1.0, *z, -lambda, *q, 0.0);         // Compute A*q - lambda*q!
        residual = Teuchos::ScalarTraits<Scalar>::magnitude(r->norm2() / lambda);!
        if (verbose) {!
          std::cout << "Iter = " << iter << "  Lambda = " << lambda!
                    << "  Residual of A*q - lambda*q = " << residual   << std::endl;  }!
      }!
      if (residual < tolerance) {  break;  }!
    }    return lambda;  !
  } !
} // end of namespace TpetraExamples!



Placement and Migration 
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Placement and Migration 

•"MPI: 
–"Data/work placement clear. 
–"Migration explicit. 

•"Threading: 
–" It’s a mess (IMHO). 
–"Some platforms good. 
–"Many not. 
–"Default is bad (but getting better). 
–"Some issues are intrinsic. 



Data Placement on NUMA 

•"Memory Intensive computations: Page placement has 
huge impact. 
•"Most systems: First touch (except LWKs). 
•"Application data objects: 

–"Phase 1: Construction phase, e.g., finite element 
assembly. 

–"Phase 2: Use phase, e.g., linear solve. 
•"Problem: First touch difficult to control in phase 1. 
•"Idea: Page migration. 

–"Not new: SGI Origin.  Many old papers on topic. 
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Data placement experiments 

•"MiniApp: HPCCG (Mantevo Project) 
•"Construct sparse linear system, solve with CG. 
•"Two modes: 

–"Data placed by assembly, not migrated for NUMA 
–"Data migrated using parallel access pattern of CG. 

•"Results on dual socket quad-core Nehalem system. 
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Weak Scaling Problem 

!" MPI and conditioned data approach comparable. 
!" Non-conditioned very poor scaling. 
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Page Placement summary 

•"MPI+OpenMP (or any threading approach) is best 
overall. 
•"But: 

–"Data placement is big issue. 
–"Hard to control. 
–" Insufficient runtime support. 

•"Current work: 
–"Migrate on next-touch (MONT). 
–"Considered in OpenMP (next version). 
–"Also being studied in Kitten (Kevin  Pedretti). 

•"Note: This phenomenon especially damaging to 
OpenMP common usage. 
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Resilient Algorithms: 
A little reliability, please. 
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My Luxury in Life (wrt FT/Resilience) 

The privilege to think of a computer as a 
reliable, digital machine. 

81 

“At 8 nm process technology, it will be harder 
to tell a 1 from a 0.”   

 (W. Camp) 



Users’ View of the System Now 

•"“All nodes up and running.” 
•"Certainly nodes fail, but invisible to user. 
•"No need for me to be concerned. 
•"Someone else’s problem. 
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Users’ View of the System 
Future 

•"Nodes in one of four states. 
1." Dead. 
2." Dying (perhaps producing faulty results). 
3." Reviving. 
4." Running properly: 

a)" Fully reliable or… 
b)" Maybe still producing an occasional bad result. 
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Hard Error Futures 

•"C/R will continue as dominant approach: 
–"Global state to global file system OK for small systems. 
–"Large systems: State control will be localized, use SSD. 

•"Checkpoint-less restart: 
–"Requires full vertical HW/SW stack co-operation. 
–"Very challenging. 
–"Stratified research efforts not effective. 



Soft Error Futures 

•"Soft error handling: A legitimate algorithms issue. 
•"Programming model, runtime environment play role. 



Consider GMRES as an example of how soft 
errors affect correctness 

•" Basic Steps 
1)" Compute Krylov subspace (preconditioned sparse matrix-

vector multiplies) 
2)" Compute orthonormal basis for Krylov subspace (matrix 

factorization) 
3)" Compute vector yielding minimum residual in subspace 

(linear least squares) 
4)" Map to next iterate in the full space 
5)" Repeat until residual is sufficiently small 

•" More examples in Bronevetsky & Supinski, 2008 
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Why GMRES? 

•"Many apps are implicit. 
•"Most popular (nonsymmetric) linear solver is 
preconditioned GMRES. 
•"Only small subset of calculations need to be 
reliable. 
–"GMRES is iterative, but also direct. 
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Every calculation matters 

•" Small PDE Problem: ILUT/GMRES 
•" Correct result:35 Iters, 343M 

FLOPS 
•" 2 examples of a single bad op. 
•" Solvers:  

–" 50-90% of total app operations. 
–" Soft errors most likely in solver. 

•" Need new algorithms for soft errors: 
–" Well-conditioned wrt errors. 
–" Decay proportional to number of errors. 
–" Minimal impact when no errors. 

Description Iters FLOPS Recursive 
Residual 
Error 

Solution Error 

All Correct 
Calcs 

35 343M 4.6e-15 1.0e-6 

Iter=2, y[1] += 
1.0 
SpMV incorrect 
Ortho subspace 

35 343M 6.7e-15 3.7e+3 

Q[1][1] += 1.0 
Non-ortho 
subspace 

N/C N/A 7.7e-02 5.9e+5 
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Soft Error Resilience 

•" New Programming Model 
Elements:  
•" SW-enabled, highly reliable: 

•" Data storage, paths. 
•" Compute regions. 

•" Idea: New algorithms with 
minimal usage of high reliability. 

•" First new algorithm: FT-GMRES. 
•" Resilient to soft errors. 
•" Outer solve: Highly Reliable 
•" Inner solve: “bulk” reliability. 

•" General approach applies to 
many algorithms. 

M. Heroux, M. Hoemmen!



FTGMRES Results 
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10!8

10!6

10!4

10!2

100

Outer iteration number

Fault!Tolerant GMRES, restarted GMRES, and nonrestarted GMRES
(deterministic faulty SpMVs in inner solves)

 

 
FT!GMRES(50,10)
GMRES(50), 10 restart cycles
GMRES(500)



Quiz (True or False) 

5." DRY is not possible across CPUs and GPUs. 
6." Extended precision is too expensive to be useful. 
7." Resilience will be built into algorithms. 



Bi-Modal: MPI-only and MPI+[X|Y|Z] 
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Parallel Machine Block Diagram 

Memory!

Core 0! Core n-1!

Node 0!

Memory!

Core 0! Core n-1!

Node 1!

Memory!

Core 0! Core n-1!

Node m-1!

–" Parallel machine with p = m * n processors:  
•" m = number of nodes. 
•" n = number of shared memory processors per node. 

–" Two ways to program: 
•" Way 1: p MPI processes. 
•" Way 2: m MPI processes with n threads per MPI process. 

-" New third way: 
•" “Way 1” in some parts of the execution (the app). 
•" “Way 2” in others (the solver). 
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Multicore Scaling: App vs. Solver 

Application:  
•"Scales well 

(sometimes superlinear) 
•"MPI-only sufficient. 

Solver:  
•"Scales more poorly. 
•"Memory system-limited. 
•"MPI+threads can help. 

*  Charon Results:  
  Lin & Shadid TLCC Report 
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MPI-Only + MPI/Threading: Ax=b 

App!
Rank 0!

App!
Rank 1!

App!
Rank 2!

App!
Rank 3!

Lib!
Rank 0!

Lib!
Rank 1!

Lib!
Rank 2!

Lib!
Rank 3!

Mem!
Rank 0!

Mem!
Rank 1!

Mem!
Rank 2!

Mem!
Rank 3!

Multicore: “PNAS” Layout!

Lib!
Rank 0!
Thread 0   Thread 1   Thread 2  Thread 3!

App passes matrix and vector values to library data classes!

All ranks store A, x, b data in memory visible to rank 0!

Library solves Ax=b using shared memory algorithms!
on the node.!
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MPI Shared Memory Allocation 

Idea: 
•" Shared memory alloc/free 

functions: 
–" MPI_Comm_alloc_mem  
–" MPI_Comm_free_mem 

•" Predefined communicators: 
MPI_COMM_NODE – ranks on node 
MPI_COMM_SOCKET – UMA ranks 
MPI_COMM_NETWORK – inter node 

•" Status: 
–" Available in current development 

branch of OpenMPI. 
–" First “Hello World” Program 

works. 
–" Incorporation into standard still 

not certain. Need to build case. 
–" Next Step: Demonstrate usage 

with threaded triangular solve. 
•" Exascale potential: 

–" Incremental path to MPI+X. 
–" Dial-able SMP scope. 
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int n = …; !
double* values;!
 MPI_Comm_alloc_mem(!
 !MPI_COMM_NODE,  // comm (SOCKET works too)!

!n*sizeof(double),         // size in bytes!
!MPI_INFO_NULL,     // placeholder for now !
!&values); !                // Pointer to shared array (out)!

// At this point:!
// - All ranks on a node/socket have pointer to a shared buffer (values).!
// - Can continue in MPI mode (using shared memory algorithms) or !
// - Can quiet all but one:!
int rank;!
MPI_Comm_rank(MPI_COMM_NODE, &rank);!
if (rank==0) { // Start threaded code segment, only on rank 0 of the node!
…!
}!

 MPI_Comm_free_mem(MPI_COMM_NODE, values);!

Collaborators: B. Barrett, Brightwell, Wolf - SNL; Vallee, Koenig - ORNL !



Algorithms and Meta-Algorithms 



Communication-avoiding iterative methods 
•" Iterative Solvers: 

–" Dominant cost of many apps  (up to 80+% of runtime). 
•" Exascale challenges for iterative solvers:  

–" Collectives, synchronization. 
–" Memory latency/BW. 
–" Not viable on exascale systems in present forms. 

•" Communication-avoiding (s-step) iterative solvers: 
–" Idea: Perform s steps in bulk ( s=5 or more ):  

•" s times fewer synchronizations. 
•" s times fewer data transfers: Better latency/BW. 

–" Problem: Numerical accuracy of orthogonalization. 
•" New orthogonalization algorithm: 

–" Tall Skinny QR factorization (TSQR). 
–" Communicates less and more accurate  

than previous approaches. 
–" Enables reliable, efficient s-step methods. 

•" TSQR Implementation: 
–" 2-level parallelism (Inter and intra node). 
–" Memory hierarchy optimizations. 
–" Flexible node-level scheduling via Intel Threading Building 

Blocks. 
–" Generic scalar data type: supports mixed and extended 

precision. 

TSQR capability: 
•" Critical for exascale solvers. 
•" Part of the Trilinos scalable multicore 

capabilities. 
•" Helps all iterative solvers in Trilinos 

(available to external libraries, too). 
•"  Staffing: Mark Hoemmen (lead, post-

doc, UC-Berkeley), M. Heroux 
•" Part of Trilinos 10.6 release, Sep 2010. 

LAPACK – Serial, MGS –Threaded modified Gram-Schmidt 



Advanced Modeling and Simulation Capabilities: 
Stability, Uncertainty and Optimization 

•" Promise: 10-1000 times increase in parallelism (or more). 

•" Pre-requisite: High-fidelity “forward” solve: 
–" Computing families of solutions to similar problems. 
–" Differences in results must be meaningful. 

SPDEs: Transient 
Optimization: 

    - Size of a single forward problem 

Lower Block 
Bi-diagonal 

Block 
Tri-diagonal 

t0 

t0 

tn 

tn 



Advanced Capabilities:  
Readiness and Importance 

Modeling Area Sufficient 
Fidelity? 

Other concerns Advanced 
capabilities priority 

Seismic 
S. Collis, C. Ober 

Yes. None as big. Top. 

Shock & Multiphysics 
(Alegra) 
A. Robinson, C. Ober 

Yes, but some 
concerns. 

Constitutive models, 
material responses 
maturity. 

Secondary now.  Non-
intrusive most 
attractive. 

Multiphysics 
(Charon) 

J. Shadid 

Reacting flow w/ 
simple transport, 
device w/ drift 
diffusion, … 

Higher fidelity, more 
accurate multiphysics. 

Emerging, not top. 

Solid mechanics 

K. Pierson 

Yes, but… Better contact. Better 
timestepping.  Failure 
modeling. 

Not high for now. 



Advanced Capabilities: 
Other issues 

•"Non-intrusive algorithms (e.g., Dakota): 
–"Task level parallel:  

•"A true peta/exa scale problem? 
•"Needs a cluster of 1000 tera/peta scale nodes. 

•"Embedded/intrusive algorithms (e.g., Trilinos): 
–"Cost of code refactoring: 

•"Non-linear application becomes “subroutine”. 
•"Disruptive, pervasive design changes. 

•"Forward problem fidelity: 
–"Not uniformly available. 
–"Smoothness issues. 
–"Material responses. 



Advanced Capabilities: 
Derived Requirements 

•" Large-scale problem presents collections of related subproblems with 
forward problem sizes. 

•" Linear Solvers: 
–" Krylov methods for multiple RHS, related systems. 

•" Preconditioners: 
–" Preconditioners for related systems. 

•" Data structures/communication: 
–" Substantial graph data reuse.  



Accelerator-based Scalability Concerns 

Global Scope Single Instruction Multiple 
Thread (SIMT) is too Restrictive 
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If FLOPS are free,  
why are we making them cheaper? 
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Larry Wall: 
Easy things should be easy, hard 

things should be possible. 

Why are we making easy things 
easier and hard things impossible? 
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Explicit/SIMT vs. Implicit/Recursive Algorithms 

Problem Difficulty!
Easy! Hard!

Ti
m

e 
to

 S
ol

ut
io

n!

Implicit/Recursive:!
•" Implicit formulations.!
•" Multilevel prec.!

Explicit/SIMT:!
•" Explicit formulations.!
•" Jacobi prec.!



Problems with Accelerator-based Scalability 
•"Global SIMT is the only approach that really works well on GPUs, but: 

–"Many of our most robust algorithms have no apparent SIMT 
replacement. 

–"Working on it, but a lot to do, and fundamental issues at play. 
•"SMs might be useful to break SIMT mold, but:  

–" Local store is way too small. 
–"No market reason to make it bigger. 

•"Could consider SIMT approaches, but: 
–" Broader apps community moving the other way: 

•" Climate: Looking at implicit formulations. 
•" Embedded UQ: Coupled formulations. 

•"Accelerator-based apps at risk?  
–" Isolation from the broader app trends. 
–" Accelerators good, but in combination with strong multicore CPU. 



Summary 

•" Some app targets will change: 
–" Advanced modeling and simulation: Gives a better answer. 
–" Kernel set changes (including redundant computation). 

•" Resilience requires an integrated strategy: 
–" Most effort at the system/runtime level. 
–" C/R (with localization) will continue at the app level. 
–" Resilient algorithms will mitigate soft error impact. 
–" Use of validation in solution hierarchy can help. 

•" Building the next generation of parallel applications requires enabling 
domain scientists: 

–" Write sophisticated methods. 
–" Do so with serial fragments. 
–" Fragments hoisted into scalable, resilient fragment. 

•" Success of manycore will require breaking out of global SIMT-only. 



Quiz (True or False) 

1." MPI-only has the best parallel performance. 
2." Future parallel applications will not have MPI_Init(). 
3." Use of “markup”, e.g., OpenMP pragmas, is the least 

intrusive approach to parallelizing a code. 
4." All future programmers will need to write parallel code. 
5." DRY is not possible across CPUs and GPUs 
6." CUDA and OpenCL may be footnotes in computing history. 
7." Extended precision is too expensive to be useful. 
8." Resilience will be built into algorithms. 
9." A solution with error bars complements architecture trends. 
10."Global SIMT is sufficient parallelism for scientific computing. 


