
Preparing for Tomorrow's Systems:
Manycore, Resilience, Patterns and Transition

Michael A. Heroux
Scalable Algorithms Department

Sandia National Laboratories

Collaborators:
SNL Staff: [B.|R.] Barrett, E. Boman, R. Brightwell, H.C. Edwards, A. Williams
SNL Postdocs: M. Hoemmen, S. Rajamanickam
MIT Lincoln Lab: M. Wolf
ORNL staff: Chris Baker

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin company, for the U.S. Department of Energy!s National Nuclear Security Administration under contract DE-AC04-94AL85000. !

SAND2011-4710C

Quiz (True or False)

1." MPI-only has the best parallel performance.
2." Future parallel applications will not have MPI_Init().
3." Use of “markup”, e.g., OpenMP pragmas, is the least

intrusive approach to parallelizing a code.
4." All future programmers will need to write parallel code.
5." DRY is not possible across CPUs and GPUs.
6." CUDA and OpenCL will be footnotes in computing history.
7." Extended precision is too expensive to be useful.
8." Resilience will be built into algorithms.
9." A solution with error bars complements architecture trends.
10."Global SIMT is sufficient parallelism for scientific computing.

Trilinos Background & Motivation

Trilinos Contributors

Evolving Trilinos Solution
!" Trilinos1 is an evolving framework to address these challenges:

"" Fundamental atomic unit is a package.
"" Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).
"" Provides a common abstract solver API (Thyra package).
"" Provides a ready-made package infrastructure:

•" Source code management (git).
•" Build tools (Cmake).
•" Automated regression testing.
•" Communication tools (mail lists, trac).

"" Specifies requirements and suggested practices for package SQA.
!" In general allows us to categorize efforts:

"" Efforts best done at the Trilinos level (useful to most or all packages).
"" Efforts best done at a package level (peculiar or important to a package).
"" Allows package developers to focus only on things that are unique to

their package.

1. Trilinos loose translation: “A string of pearls”

Transforming Computational Analysis To
Support High Consequence Decisions

Forward Analysis

Accurate & Efficient Forward Analysis

Robust Analysis with Parameter Sensitivities

Optimization of Design/System

Quantify Uncertainties/Systems Margins

Optimization under Uncertainty

Each stage requires greater performance and error control of prior stages:
Always will need: more accurate and scalable methods.

 more sophisticated tools.

Systems of systems

Trilinos Download History: 19525 Total

Registered User by Region

Registered Users by Type

Ubuntu/Debian: Other sources

maherou@jaguar13:/ccs/home/maherou> module avail trilinos

-- /opt/cray/modulefiles ---
trilinos/10.0.1(default) trilinos/10.2.0

--- /sw/xt5/modulefiles --
trilinos/10.0.4 trilinos/10.2.2 trilinos/10.4.0 trilinos/8.0.3 trilinos/9.0.2

Capability Leaders:
Layer of Proactive Leadership

!" Areas:
"" Framework, Tools & Interfaces (J. Willenbring).
"" Software Engineering Technologies and Integration (R. Bartlett).
"" Discretizations (P. Bochev).
"" Geometry, Meshing & Load Balancing (K. Devine).
"" Scalable Linear Algebra (M. Heroux).
"" Linear & Eigen Solvers (J. Hu).
"" Nonlinear, Transient & Optimization Solvers (A. Salinger).
"" Scalable I/O: (R. Oldfield)

!" Each leader provides strategic direction across all Trilinos packages
within area.

Trilinos Package Summary
Objective Package(s)

Discretizations
Meshing & Discretizations STKMesh, Intrepid, Pamgen, Sundance, ITAPS, Mesquite

Time Integration Rythmos

Methods
Automatic Differentiation Sacado

Mortar Methods Moertel

Services

Linear algebra objects Epetra, Jpetra, Tpetra, Kokkos

Interfaces Thyra, Stratimikos, RTOp, FEI, Shards

Load Balancing Zoltan, Isorropia

“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika

C++ utilities, I/O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx

Solvers

Iterative linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos, Amesos2

Direct dense linear solvers Epetra, Teuchos, Pliris

Iterative eigenvalue solvers Anasazi, Rbgen

ILU-type preconditioners AztecOO, IFPACK, Ifpack2

Multilevel preconditioners ML, CLAPS

Block preconditioners Meros, Teko

Nonlinear system solvers NOX, LOCA

Optimization (SAND) MOOCHO, Aristos, TriKota, Globipack, Optipack

Stochastic PDEs Stokhos

Observations and Strategies for Parallel
Software Design

Three Design Points

•"Terascale Laptop: Uninode-Manycore

•"Petascale Deskside: Multinode-Manycore

•"Exascale Center: Manynode-Manycore

Basic Concerns: Trends, Manycore

•"Stein’s Law: If a trend cannot
continue, it will stop.

Herbert Stein, chairman of the Council of
Economic Advisers under Nixon and
Ford.

•" Trends at risk:
–" Power.
–" Single core performance.
–"Node count.
–"Memory size & BW.
–"Concurrency expression in

existing Programming
Models.

–"Resilience.

0
20
40
60
80

100
120
140
160
180

!"#$%& !"#$'& !"#$(&

G
ig

af
lo

ps

3D Grid Points with 27pt stencil

Parallel CG Performance 512 Threads
32 Nodes = 2.2GHz AMD 4sockets X 4cores

p32 x t16

p128 x t4

p512 x t1

Edwards: SAND2009-8196
Trilinos ThreadPool Library v1.1.!

“Status Quo” ~ MPI-only!

15

Strong Scaling Potential!

Observations

•"MPI-Only is not sufficient, except … much of the time.
•"Near-to-medium term:

–"MPI+[OMP|TBB|Pthreads|CUDA|OCL|MPI]
–" Long term, too?

•"Concern:
–" Best hybrid performance: 1 MPI rank per UMA core set.
–"UMA core set size growing slowly # Lots of MPI tasks.

•" Long- term:
–" Something hierarchical, global in scope.

•"Conjecture:
–"Data-intensive apps need non-SPDM model.
–"Will develop new programming model/env.
–"Rest of apps will adopt over time.
–" Time span: 10-20 years.

What Can we Do Right Now?

•"Study why MPI was successful.
•"Study new parallel landscape.
•"Try to cultivate an approach similar to MPI (and
others).

MPI Impresssions

18

!"#$%&"'()*&#*+(,%+(-./*+0%1/.#$&2(3//'$0"#$%&4

!"#$%#&%'()&*%+,%-,,.

! /0*1)23&4,5*

" #$%%&'()*+)$,-.$-&/+01+2$3$))&)+40'2.56,-

")07&%5+40''0,+8&,0'6,$503

! 2035$()&+$430%%+$34965&45.3&%+$,8+%*%5&'%

" .2130,5+&11035+3&2$68+(*

! %*%5&'+2035$(6)65*

! &:2)6465+)04$)65*+'$,$-&'&,5

! 6,*&*%35.%47894:3&4,5*

" 9.'$,+2308.456;65*

!)07<)&;&)+230-3$''6,-+'08&)

" %0157$3&+6,,0;$560,

!)6'65&8+8&;&)02'&,5+01+$)5&3,$56;&%

Dan Reed, Microsoft!
Workshop on the Road Map for the

!Revitalization of High End
!Computing "
!June 16-18, 2003!

Tim Stitts, CSCS!
SOS14 Talk!
March 2010!

“ MPI is often considered the
“portable assembly language” of
parallel computing, …”!
Brad Chamberlain, Cray, 2000.!

11

3D Stencil in NAS MG

subroutine comm3(u,n1,n2,n3,kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer n1, n2, n3, kk
double precision u(n1,n2,n3)
integer axis

if(.not. dead(kk))then
do axis = 1, 3

if(nprocs .ne. 1) then
call sync_all()
call give3(axis, +1, u, n1, n2, n3, kk

)
call give3(axis, -1, u, n1, n2, n3, kk

)
call sync_all()
call take3(axis, -1, u, n1, n2, n3)
call take3(axis, +1, u, n1, n2, n3)

else
call comm1p(axis, u, n1, n2, n3, kk)

endif
enddo

else
do axis = 1, 3

call sync_all()
call sync_all()

enddo
call zero3(u,n1,n2,n3)

endif
return
end

subroutine give3(axis, dir, u, n1, n2, n3, k)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3, k, ierr
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2,

i2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)]
=

> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(n1-1,

i2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)]
=

> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,

2,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)]
=

> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-

1,i3)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)]
=

> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(

i1,i2,2)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)]
=

> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(

i1,i2,n3-1)
enddo

enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)]
=

> buff(1:buff_len,buff_id)

endif
endif

return
end

subroutine take3(axis, dir, u, n1, n2, n3)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer buff_id, indx

integer i3, i2, i1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1

u(n1,i2,i3) = buff(indx, buff_id)
enddo

enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id)

enddo
enddo

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)

enddo
enddo

endif
endif

return
end

subroutine comm1p(axis, u, n1, n2, n3, kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id
integer i, kk, indx

dir = -1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(n1-1,

i2,i3)
enddo

enddo
endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-

1,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,n3-

1)
enddo

enddo
endif

dir = -1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2, i2,i3)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,

2,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,2)

enddo
enddo

endif

do i=1,nm2
buff(i,4) = buff(i,3)
buff(i,2) = buff(i,1)

enddo

dir = -1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(n1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id)

enddo
enddo

endif

dir = +1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)

enddo
enddo

endif

return
end

param coeff: domain(1) = [0..3];
param Stencil: domain(3) = [-1..1, -1..1, -1..1];

function rprj3(S, R) {

param w: [coeff] float
= (/0.5, 0.25, 0.125, 0.0625/);

param w3d: [(i,j,k) in Stencil] float
= w((i!=0) + (j!=0) + (k!=0));

const SD = S.Domain,

Rstr = R.stride;

S = [ijk in SD] sum reduce

[off in Stencil]

(w3d(off) * R(ijk + Rstr*off));

}

Brad Chamberlain, Cray, PPOPP’06, http://chapel.cray.com/publications/ppopp06-slides.pdf!

MPI Reality

21

Tramonto
WJDC

Functional

•" New functional.
•" Bonded systems.
•" 552 lines C code.

WJDC-DFT (Werthim, Jain, Dominik, and Chapman) theory for bonded systems. (S. Jain, A. Dominik, and W.G. Chapman.
Modified interfacial statistical associating fluid theory: A perturbation density functional theory for inhomogeneous complex fluids. J.
Chem. Phys., 127:244904, 2007.) Models stoichiometry constraints inherent to bonded systems. !

How much MPI-specific code?!

dft_fill_wjdc.c!

dft_fill_wjdc.c
MPI-specific

code

MFIX
Source term for

pressure
correction

•" MPI-callable, OpenMP-enabled.
•" 340 Fortran lines.
•" No MPI-specific code.
•" Ubiquitous OpenMP markup

(red regions).

MFIX: Multiphase Flows with Interphase eXchanges (https://www.mfix.org/)!

source_pp_g.f!

Reasons for MPI Success?

•"Portability? Yes.
•"Standardized? Yes.
•"Momentum? Yes.
•"Separation of many
Parallel & Algorithms
concerns? Big Yes.

•"Once framework in place:
–"Sophisticated physics added as serial code.
–"Ratio of science experts vs. parallel experts: 10:1.

•"Key goal for new parallel apps: Preserve this ratio

Single Program Multiple Data (SPMD) 101

2D PDE on Regular Grid (Standard Laplace)

2D PDE on Regular Grid (Helmholtz)

2D PDE on Regular Grid (4th Order Laplace)

More General Mesh and Partitioning

SPMD Patterns for Domain Decomposition

•"Halo Exchange:
–"Conceptual.
–"Needed for any partitioning, halo layers.
–"MPI is simply portability layer.
–"Could be replace by PGAS, one-sided, …

•"Collectives:
–"Dot products, norms.

•"All other programming:
–"Sequential!!!

Computational Domain Expert Writing MPI Code

Computational Domain Expert Writing Future
Parallel Code

Evolving Parallel Programming Model

34

Parallel Programming Model:
Multi-level/Multi-device

Stateless computational kernels!
run on each core!

Intra-node (manycore)
parallelism and resource

management!

Node-local control flow (serial)!

Inter-node/inter-device (distributed)
parallelism and resource management!

Threading!

Message Passing!

stateless kernels!

computational
node with

manycore CPUs!
and / or!
GPGPU!

network of
computational

nodes!

35 Adapted from slide of H. Carter Edwards!

Domain Scientist’s Parallel Palette
•"MPI-only (SPMD) apps:

–" Single parallel construct.
–" Simultaneous execution.
–" Parallelism of even the messiest serial code.

•"MapReduce:
–" Plug-n-Play data processing framework - 80% Google cycles.

•"Pregel: Graph framework (other 20%)
•"Next-generation PDE and related applications:

–" Internode:
•" MPI, yes, or something like it.
•" Composed with intranode.

–" Intranode:
•" Much richer palette.
•" More care required from programmer.

•"What are the constructs in our new palette?

Obvious Constructs/Concerns

•"Parallel for:
 forall (i, j) in domain {…}
–"No loop-carried dependence.
–"Rich loops.
–"Use of shared memory for temporal reuse, efficient

device data transfers.
•"Parallel reduce:
forall (i, j) in domain {

 xnew(i, j) = …;
 delx+= abs(xnew(i, j) - xold(i, j));
}
–"Couple with other computations.
–"Concern for reproducibility.

Other construct: Pipeline

•"Sequence of filters.
•"Each filter is:

–"Sequential (grab element ID, enter global assembly) or
–"Parallel (fill element stiffness matrix).

•"Filters executed in sequence.
•"Programmer’s concern:

–"Determine (conceptually): Can filter execute in parallel?
–"Write filter (serial code).
–"Register it with the pipeline.

•"Extensible:
–"New physics feature.
–"New filter added to pipeline.

0

4

2 1

3

6 8

5

7

E1

E3 E4

E2

E1

E2

E3

E4

0
1
4
3

0
1
2
3
4
5
6
7
8

1
2
5
4

3
4
7
6

4
5
8
7

Global Matrix

Assemble
Rows
0,1,2

Assemble
Rows
3,4,5

Assemble
Rows
6,7,8

TBB Pipeline for FE assembly

FE Mesh

Element-stiffness
matrices computed

in parallel

Launch elem-data
from mesh

Compute stiffnesses
& loads

Assemble rows of stiffness
into global matrix

Serial Filter Parallel Filter Several Serial Filters in series

Each assembly filter assembles certain rows from a
stiffness, then passes it on to the next assembly filter

0

4

2 1

3

6 8

5

7

E1

E3 E4

E2

E1

E2

E3

E4

0
1
4
3

0
1
2
3
4
5
6
7
8

1
2
5
4

3
4
7
6

4
5
8
7

Global Matrix

Assemble
Rows

Alternative
TBB Pipeline for FE assembly

FE Mesh

Element-stiffness
matrices computed

in parallel

Launch elem-data
from mesh

Compute stiffnesses
& loads

Assemble rows of stiffness
into global matrix

Serial Filter Parallel Filter Parallel Filter

Each parallel call to the assembly
filter assembles all rows from the
stiffness, using locking to avoid
race conflicts with other threads.

Assemble
Rows

Assemble
Rows

Assemble
Rows

Base-line FE Assembly Timings

Num-
procs

Assembly
-time
Intel 11.1

Assembly
-time
GCC 4.4.4

1 1.80s 1.95s

4 0.45s 0.50s

8 0.24s 0.28s

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows
The finite-element assembly performs 4096000 matrix-row sum-into
operations
(8 per element) and 4096000 vector-entry sum-into operations.

MPI-only, no threads. Linux dual quad-core workstation.

FE Assembly Timings

Num-
threads

Elem-
group
-size

Matrix-
conflicts

Vector-
conflicts

Assembly
-time

1 1 0 0 2.16s

1 4 0 0 2.09s

1 8 0 0 2.08s

4 1 95917 959 1.01s

4 4 7938 25 0.74s

4 8 3180 4 0.69s

8 1 64536 1306 0.87s

8 4 5892 49 0.45s

8 8 1618 1 0.38s

Problem size: 80x80x80 == 512000 elements, 531441 matrix-rows
The finite-element assembly performs 4096000 matrix-row sum-into operations
(8 per element) and 4096000 vector-entry sum-into operations.

No MPI, only threads. Linux dual quad-core workstation.

0

0.5

1

1.5

2

2.5

1 4 8

1
4
8

Other construct: Thread team

•"Multiple threads.
•"Fast barrier.
•"Shared, fast access memory pool.
•"Example: Nvidia SM
•"X86 more vague, emerging more clearly in future.

•" Observe: Iteration count increases with number of subdomains.
•" With scalable threaded smoothers (LU, ILU, Gauss-Seidel):

–" Solve with fewer, larger subdomains.
–" Better kernel scaling (threads vs. MPI processes).
–" Better convergence, More robust.

•" Exascale Potential: Tiled, pipelined implementation.
•" Three efforts:

–" Level-scheduled triangular sweeps (ILU solve, Gauss-Seidel).
–" Decomposition by partitioning
–" Multithreaded direct factorization

Preconditioners for Scalable Multicore Systems

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)!

MPI
Tasks Threads Iterations

4096 1 153

2048 2 129

1024 4 125

512 8 117

256 16 117

128 32 111

44
Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and "
Michael A. Heroux and Erik G. Boman, VECPAR 2010.!

MPI Ranks!

Thread Team Advantanges

•"Qualitatively better algorithm:
–"Threaded triangular solve scales.
–"Fewer MPI ranks means fewer iterations, better

robustness.
•"Exploits:

–"Shared data.
–"Fast barrier.
–"Data-driven parallelism.

Finite Elements/Volumes/Differences
and parallel node constructs

•"Parallel for, reduce, pipeline:
–"Sufficient for vast majority of node level computation.
–"Supports:

•"Complex modeling expression.
•"Vanilla parallelism.

–"Must be “stencil-aware” for temporal locality.
•"Thread team:

–"Complicated.
–"Requires true parallel algorithm knowledge.
–"Useful in solvers.

Programming Today for Tomorrow’s
Machines

47

Programming Today for Tomorrow’s Machines

•"Parallel Programming in the small:
–"Focus: writing sequential code fragments.
–"Programmer skills:

•" 10%: Pattern/framework experts (domain-aware).
•" 90%: Domain experts (pattern-aware)

•"Languages needed are already here.
–"Exception: Large-scale data-intensive graph?

FE/FV/FD Parallel Programming Today

for ((i,j,k) in points/elements on subdomain) {!
!compute coefficients for point (i,j,k)!
!inject into global matrix!
 }!

Notes:
•" User in charge of:

–" Writing physics code.
–" Iteration space traversal.
–" Storage association.

•" Pattern/framework/runtime in charge of:
–" SPMD execution.

FE/FV/FD Parallel Programming Tomorrow

pipeline <i,j,k> {!
 filter(addPhysicsLayer1<i,j,k)>);!
! ...!
 filter(addPhysicsLayern<i,j,k>);!
! filter(injectIntoGlobalMatrix<i,j,k>);!
 }!

Notes:
•" User in charge of:

–" Writing physics code (filter).
–" Registering filter with framework.

•" Pattern/framework/runtime in charge of:
–" SPMD execution.
–" Iteration space traversal.

o" Sensitive to temporal locality.
–" Filter execution scheduling.
–" Storage association.

•" Better assignment of responsibility (in general).

Quiz (True or False)

1." MPI-only has the best parallel performance.
2." Future parallel applications will not have MPI_Init().
3." Use of “markup”, e.g., OpenMP pragmas, is the least

intrusive approach to parallelizing a code.
4." All future programmers will need to write parallel code.

Portable Multi/Manycore Programming
Trilinos/Kokkos Node API

52

Generic Node Parallel Programming via C++
Template Metaprogramming

•"Goal: Don’t repeat yourself (DRY).
•"Every parallel programming environment supports basic
patterns: parallel_for, parallel_reduce.
–"OpenMP:

#pragma omp parallel for
for (i=0; i<n; ++i) {y[i] += alpha*x[i];}

–" Intel TBB:
parallel_for(blocked_range<int>(0, n, 100), loopRangeFn(…));

–"CUDA:
loopBodyFn<<< nBlocks, blockSize >>> (…);

•"How can we write code once for all these (and future)
environments?

Tpetra and Kokkos

•" Tpetra is an implementation of the Petra Object Model.
–" Design is similar to Epetra, with appropriate deviation.
–" Fundamental differences:
•" heavily exploits templates
•" utilizes hybrid (distributed + shared) parallelism via Kokkos Node API

•"Kokkos is an API for shared-memory parallel nodes
–" Provides parallel_for and parallel_reduce skeletons.
–" Support shared memory APIs:
•" ThreadPool Interface (TPI; Carter Edwards’s pthreads Trilinos package)
•" Intel Threading Building Blocks (TBB)
•" NVIDIA CUDA-capable GPUs (via Thrust)
•" OpenMP (implemented by Radu Popescu/EPFL)

Generic Shared Memory Node

•"Abstract inter-node comm provides DMP support.
•"Need some way to portably handle SMP support.
•"Goal: allow code, once written, to be run on any parallel
node, regardless of architecture.
•"Difficulty #1: Many different memory architectures

–"Node may have multiple, disjoint memory spaces.
–"Optimal performance may require special memory

placement.
•"Difficulty #2: Kernels must be tailored to architecture

–" Implementation of optimal kernel will vary between archs
–"No universal binary # need for separate compilation paths

•"Practical goal: Cover 80% kernels with generic code.

55

Kokkos Node API

•"Kokkos provides two main components:
–"Kokkos memory model addresses Difficulty #1

•"Allocation, deallocation and efficient access of memory
•" compute buffer: special memory used for parallel computation
•"New: Local Store Pointer and Buffer with size.

–"Kokkos compute model addresses Difficulty #2
•"Description of kernels for parallel execution on a node
•"Provides stubs for common parallel work constructs
•"Currently, parallel for loop and parallel reduce

•"Code is developed around a polymorphic Node object.
•"Supporting a new platform requires only the
implementation of a new node type.

56

Kokkos Memory Model

•"A generic node model must at least:
–"support the scenario involving distinct device memory
–"allow efficient memory access under traditional scenarios

•"Nodes provide the following memory routines:
 ArrayRCP<T> Node::allocBuffer<T>(size_t sz);

 void Node::copyToBuffer<T>(T * src,

 ArrayRCP<T> dest);
 void Node::copyFromBuffer<T>(ArrayRCP<T> src,

 T * dest);

 ArrayRCP<T> Node::viewBuffer<T> (ArrayRCP<T> buff);

 void Node::readyBuffer<T>(ArrayRCP<T> buff);

Kokkos Compute Model

•" How to make shared-memory programming generic:
–" Parallel reduction is the intersection of dot() and norm1()
–" Parallel for loop is the intersection of axpy() and mat-vec
–" We need a way of fusing kernels with these basic constructs.

•" Template meta-programming is the answer.
–" This is the same approach that Intel TBB and Thrust take.
–" Has the effect of requiring that Tpetra objects be templated on Node type.

•" Node provides generic parallel constructs, user fills in the rest:

!"#$%&!"'()%&**'+,-.''
/012'302"44$&5&%%"%67058'
''19!':";<'19!'"92<'+,-'=05>2&!&?@'

!"#$%&!"'()%&**'+,-.'
+,-44A"2B)!109CD$"'302"44$&5&%%"%65"2B)"8'
''19!':";<'19!'"92<'+,-'=05>2&!&?@'

Work-data pair (WDP) struct provides:
•" loop body via WDP::execute(i)

Work-data pair (WDP) struct provides:
•" reduction type WDP::ReductionType
•" element generation via WDP::generate(i)
•" reduction via WDP::reduce(x,y)

58

Example Kernels: axpy() and dot()!

!"#$%&!"'()%&**'+,-.'
/012''
302"44$&5&%%"%6705819!':";<'19!'"92<'''
'''''''''''''''''''+,-'=05>2&!&''''?@'

!"#$%&!"'()%&**'+,-.'
+,-44A"2B)!109CD$"'
302"44$&5&%%"%65"2B)"819!':";<'19!'"92<'
''''''''''''''''''''''+,-'=05>2&!&''''?@'

!"#$%&!"'()%&**'C.''
*!5B)!'EFDG'H'
'')09*!'C'I'F@'
''C'I'D@'
''C'&%$J&<':"!&@'
''/012'"F")B!"819!'1?''

''H'DK1L'M'&%$J&IFK1L'N':"!&IDK1L@'O'
O@'

!"#$%&!"'()%&**'C.'
*!5B)!',0!G$'H'
''!D$"2"7'C'A"2B)!109CD$"@'
'')09*!'C'I'F<'I'D@'
''C'12"9!1!D8?'''''''H'5"!B59'8C?P@''''''O'
''C';"9"5&!"819!'1?''H'5"!B59'FK1LIDK1L@'O'

''C'5"2B)"8C'F<'C'D?'H'5"!B59'F'N'D@'''''O'
O@'

EFDG(20B:%".'0$@'
0$QF'M'QQQ@''0$Q&%$J&'M'QQQ@'
0$QD'M'QQQ@''0$Q:"!&''M'QQQ@'
902"Q$&5&%%"%6705('EF$DG$(20B:%".'.'
'''''''''''''''''8P<'%"9;!J<'0$?@'

,0!G$(7%0&!.'0$@'
0$QF'M'QQQ@''0$QD'M'QQQ@'
7%0&!'20!@'
20!'M'902"Q$&5&%%"%65"2B)"(',0!G$(7%0&!.'.'
''''''''''''''''''''''''''8P<'%"9;!J<'0$?@'

59

Compile-time Polymorphism

Kokkos
functor
(e.g.,
AxpyOp)

Serial
Kernel

+SerialNode pthread
Kernel

+TpiNode
Thrust
Kernel +ThrustNode

Future
Kernel

+FutureNode

. . .!

!"!!#$!!%

&"!!#'!&%

("!!#'!)%

("&!#'!)%

*"!!#'!)%

*"&!#'!)%

+,-./0123,%(!!!!%(% 455123,%(!!!!%(% 455123,%(!!!!%*% 467123,%(!!!!%(% 467123,%(!!!!%*% 48-9:;<6=123,%(!!!!%
(%

!"
#

$%
&'

$(
)%

*+,$%!-.$/%01+2%3"4$/%5%!61$7,'%

8+99+'%*+,$%:0;%<'%*7=<$%;#.>$#$?@7=+?%
:A.-/%>$?BCD8/%E+7@/%"?@%,7@7%

>2/;%?2@@2:%.A.;%BC,%

>2/;%A/BD,%.A.;%BC,%

>2/;%?2@@2:%:9C%%BC,%

>2/;%A/BD,%:9C%%BC,%

.A;%?2@@2:%.A.;%BC,%

.A;%A/BD,%.A.;%BC,%

.A;%?2@@2:%:9C%%BC,%

.A;%A/BD,%:9C%%BC,%

!"!!#$!!%

&"!!#'!(%

("!!#'!(%

)"!!#'!(%

*"!!#'!(%

+"!!#'!,%

+"&!#'!,%

-./012345.%+!!!!!!%+% 677345.%+!!!!!!%+% 677345.%+!!!!!!%&% 689345.%+!!!!!!%+% 689345.%+!!!!!!%&% 6:/;<=>8?345.%+!!!!!!%
+%

!"
#

$%
&'

$(
)%

*+,$%!-.$/%01+2%3"4$/%5%671$8,'%

9+::+'%*+,$%;0<%='%*8>=$%<#.?$#$@68>+@%
;A.-/%?$@BCD%

@41=%A4BB4<%0C0=%DE.%

@41=%C1DF.%0C0=%DE.%

@41=%A4BB4<%<;E%%DE.%

@41=%C1DF.%<;E%%DE.%

0C=%A4BB4<%0C0=%DE.%

0C=%C1DF.%0C0=%DE.%

0C=%A4BB4<%<;E%%DE.%

0C=%C1DF.%<;E%%DE.%

!"!!#$!!%

&"!!#'!(%

)"!!#'!(%

*"!!#'!(%

+"!!#'!(%

,"!!#'!&%

,"&!#'!&%

-./012345.%,!!!!!!!%,%677345.%,!!!!!!!%,% 677345.%,!!!!!!!%&% 689345.%,!!!!!!!%,% 689345.%,!!!!!!!%&% 6:/;<=>8?345.%
,!!!!!!!%,%

!"
#

$%
&'
$(

)%

*+,$%!-.$/%01+2%3"4$/%5%!61$7,'%

8+99+'%*+,$%:0;%<'%*7=<$%;#.>$#$?@7=+?%
:A.-/%>$?BCDE/%F+7@/%"?@%,7@7%

@41=%A4BB4<%0C0=%DE.%

@41=%C1DF.%0C0=%DE.%

@41=%A4BB4<%<;E%%DE.%

@41=%C1DF.%<;E%%DE.%

0C=%A4BB4<%0C0=%DE.%

0C=%C1DF.%0C0=%DE.%

0C=%A4BB4<%<;E%%DE.%

0C=%C1DF.%<;E%%DE.%

64
What’s the Big Deal about Vector-Vector Operations?

Examples from OOQP (Gertz, Wright)

Example from TRICE (Dennis, Heinkenschloss, Vicente)

Example from IPOPT (Waechter)

Currently in MOOCHO :
 > 40 vector operations!

Many different and unusual
vector operations are needed
by interior point methods for
optimization!

Tpetra RTI Components

•"Set of stand-alone non-member methods:
–" unary_transform<UOP>(Vector &v, UOP op)
–" binary_transform<BOP>(Vector &v1, const Vector &v2, BOP op)
–" reduce<G>(const Vector &v1, const Vector &v2, G op_glob)
–" binary_pre_transform_reduce<G>(Vector &v1,

 const Vector &v2,
 G op_glob)

•" These are non-member methods of Tpetra::RTI which are
loosely coupled with Tpetra::MultiVector and Tpetra::Vector.
•" Tpetra::RTI also provides Operator-wrappers:

–" class KernelOp<..., Kernel > : Tpetra::Operator<...>
–" class BinaryOp<...,BinaryOp> : Tpetra::Operator<...>

Tpetra RTI Example

// isn’t this nicer than a bunch of typedefs?
auto &platform = Tpetra::DefaultPlatform::getDefaultPlatform();
auto comm = platform.getComm();
auto node = platform.getNode();

// create Map and some Vector objects
Tpetra::global_size_t numGlobalRows = ...;
auto map = createUniformContigMapWithNode<int,int>(numGlobalRows, comm, node);
const size_t numLocalRows = map->getNodeNumElements();
auto x = Tpetra::createVector<float>(map),
 y = Tpetra::createVector<float>(map);
auto z = Tpetra::createVector<double>(map),
 w = Tpetra::createVector<double>(map);

// parallel initialization of x[i] = 1.0 using C++-0x lambda function
Tpetra::RTI::unary_transform(*x, [](float xi){return 1.0f;});
// parallel initialization of y[i] = x[i]
Tpetra::RTI::binary_transform(*y, *x, [](float, float xi) {return xi;});
// parallel y[i] = x[i] + y[i]
Tpetra::RTI::binary_transform(*y, *x, std::plus<float>());
// parallel single precision dot(x,y)
fresult = Tpetra::RTI::reduce(*x, *y, reductionGlob<ZeroOp<float>>(
 std::multiplies<float>(),
 std::plus<float>()));

Future Node API Trends

•"TBB provides very rich pattern-based API.
–" It, or something very much like it, will provide environment

for sophisticated parallel patterns.
•"Simple patterns: FutureNode may simply be OpenMP.

–"OpenMP handles parallel_for, parallel_reduce fairly well.
–"Deficiencies being addressed.
–"Some evidence it can beat CUDA.

•"OpenCL practically unusable?
–"Functionally portable.
–"Performance not.
–"Breaks the DRY principle.

Additional Benefits of Templates

68

•" Tpetra is a templated version of the Petra distributed linear
algebra model in Trilinos.
–" Objects are templated on the underlying data types:

MultiVector<scalar=double, local_ordinal=int, !
! ! ! global_ordinal=local_ordinal> …"

CrsMatrix<scalar=double, local_ordinal=int, !
! ! ! global_ordinal=local_ordinal> …!

–" Examples:
MultiVector<double, int, long int> V;"
CrsMatrix<float> A;!

)*+,-./012134&-322151+1,/2 &&

607+7.& 8379& :3*5+/&
:3*5+/;
:3*5+/&

<*7:;
:3*5+/&

63+=/&,>/&?2@& AB'& %BC& ADBD& ('B%&

E00*.70F& !$;'& !$;!A& !$;AG& !$;GH&

Arbitrary precision solves
using Tpetra and Belos
linear solver package

Speedup of float over double
in Belos linear solver.

float double speedup
18 s 26 s 1.42x

class FloatShadowDouble {

public:
 FloatShadowDouble() {
 f = 0.0f;
 d = 0.0; }
 FloatShadowDouble(const FloatShadowDouble & fd) {
 f = fd.f;
 d = fd.d; }
…
inline FloatShadowDouble operator+= (const FloatShadowDouble & fd) {
 f += fd.f;
 d += fd.d;
 return *this; }
…
inline std::ostream& operator<<(std::ostream& os, const FloatShadowDouble& fd) {
 os << fd.f << "f " << fd.d << "d”; return os;}

IJ&E00*.70F&E47+F212K&&&
I+3796L7:3MN3*5+/&N7979F-/&

•" Templates enable new
analysis capabilities

•" Example: Float with
“shadow” double.

I+3796L7:3MN3*5+/&

Initial Residual = 455.194f 455.194d
Iteration = 15 Residual = 5.07328f 5.07618d
Iteration = 30 Residual = 0.00147022f 0.00138466d
Iteration = 45 Residual = 5.14891e-06f 2.09624e-06d
Iteration = 60 Residual = 4.03386e-09f 7.91927e-10d

Sample usage:
#include “FloatShadowDouble.hpp”
Tpetra::Vector<FloatShadowDouble> x, y;
Tpetra::CrsMatrix<FloatShadowDouble> A;
A.apply(x, y); // Single precision, but double results also computed, available

#ifndef TPETRA_POWER_METHOD_HPP!
#define TPETRA_POWER_METHOD_HPP!

#include <Tpetra_Operator.hpp>!
#include <Tpetra_Vector.hpp>!
#include <Teuchos_ScalarTraits.hpp>!

namespace TpetraExamples {!

 /** \brief Simple power iteration eigensolver for a Tpetra::Operator.!
 */!
 template <class Scalar, class Ordinal>!
 Scalar powerMethod(const Teuchos::RCP<const Tpetra::Operator<Scalar,Ordinal> > &A, !

! !int niters, typename Teuchos::ScalarTraits<Scalar>::magnitudeType tolerance, !
! !bool verbose)!

 {!
 typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType Magnitude;!
 typedef Tpetra::Vector<Scalar,Ordinal> Vector;!

 if (A->getRangeMap() != A->getDomainMap()) {!
 throw std::runtime_error("TpetraExamples::powerMethod(): operator must have domain and range maps that
are equivalent.");!
 }!

// create three vectors, fill z with random numbers!
 Teuchos::RCP<Vector> z, q, r;!
 q = Tpetra::createVector<Scalar>(A->getRangeMap());!
 r = Tpetra::createVector<Scalar>(A->getRangeMap());!
 z = Tpetra::createVector<Scalar>(A->getRangeMap());!
 z->randomize();!
 //!
 Scalar lambda = 0.0;!
 Teuchos::ScalarTraits<Scalar>::magnitudeType normz, residual = 0.0;!
 // power iteration!
 for (int iter = 0; iter < niters; ++iter) {!
 normz = z->norm2(); // Compute 2-norm of z!
 q->scale(1.0/normz, *z); // Set q = z / normz!
 A->apply(*q, *z); // Compute z = A*q!
 lambda = q->dot(*z); // Approximate maximum eigenvalue: lamba = dot(q,z)!
 if (iter % 100 == 0 || iter + 1 == niters) {!
 r->update(1.0, *z, -lambda, *q, 0.0); // Compute A*q - lambda*q!
 residual = Teuchos::ScalarTraits<Scalar>::magnitude(r->norm2() / lambda);!
 if (verbose) {!
 std::cout << "Iter = " << iter << " Lambda = " << lambda!
 << " Residual of A*q - lambda*q = " << residual << std::endl; }!
 }!
 if (residual < tolerance) { break; }!
 } return lambda; !
 } !
} // end of namespace TpetraExamples!

Placement and Migration

74

Placement and Migration

•"MPI:
–"Data/work placement clear.
–"Migration explicit.

•"Threading:
–" It’s a mess (IMHO).
–"Some platforms good.
–"Many not.
–"Default is bad (but getting better).
–"Some issues are intrinsic.

Data Placement on NUMA

•"Memory Intensive computations: Page placement has
huge impact.
•"Most systems: First touch (except LWKs).
•"Application data objects:

–"Phase 1: Construction phase, e.g., finite element
assembly.

–"Phase 2: Use phase, e.g., linear solve.
•"Problem: First touch difficult to control in phase 1.
•"Idea: Page migration.

–"Not new: SGI Origin. Many old papers on topic.

76

Data placement experiments

•"MiniApp: HPCCG (Mantevo Project)
•"Construct sparse linear system, solve with CG.
•"Two modes:

–"Data placed by assembly, not migrated for NUMA
–"Data migrated using parallel access pattern of CG.

•"Results on dual socket quad-core Nehalem system.

77

Weak Scaling Problem

!" MPI and conditioned data approach comparable.
!" Non-conditioned very poor scaling.

78

Page Placement summary

•"MPI+OpenMP (or any threading approach) is best
overall.
•"But:

–"Data placement is big issue.
–"Hard to control.
–" Insufficient runtime support.

•"Current work:
–"Migrate on next-touch (MONT).
–"Considered in OpenMP (next version).
–"Also being studied in Kitten (Kevin Pedretti).

•"Note: This phenomenon especially damaging to
OpenMP common usage.

79

Resilient Algorithms:
A little reliability, please.

80

My Luxury in Life (wrt FT/Resilience)

The privilege to think of a computer as a
reliable, digital machine.

81

“At 8 nm process technology, it will be harder
to tell a 1 from a 0.”

 (W. Camp)

Users’ View of the System Now

•"“All nodes up and running.”
•"Certainly nodes fail, but invisible to user.
•"No need for me to be concerned.
•"Someone else’s problem.

82

Users’ View of the System
Future

•"Nodes in one of four states.
1." Dead.
2." Dying (perhaps producing faulty results).
3." Reviving.
4." Running properly:

a)" Fully reliable or…
b)" Maybe still producing an occasional bad result.

83

Hard Error Futures

•"C/R will continue as dominant approach:
–"Global state to global file system OK for small systems.
–"Large systems: State control will be localized, use SSD.

•"Checkpoint-less restart:
–"Requires full vertical HW/SW stack co-operation.
–"Very challenging.
–"Stratified research efforts not effective.

Soft Error Futures

•"Soft error handling: A legitimate algorithms issue.
•"Programming model, runtime environment play role.

Consider GMRES as an example of how soft
errors affect correctness

•" Basic Steps
1)" Compute Krylov subspace (preconditioned sparse matrix-

vector multiplies)
2)" Compute orthonormal basis for Krylov subspace (matrix

factorization)
3)" Compute vector yielding minimum residual in subspace

(linear least squares)
4)" Map to next iterate in the full space
5)" Repeat until residual is sufficiently small

•" More examples in Bronevetsky & Supinski, 2008

86

Why GMRES?

•"Many apps are implicit.
•"Most popular (nonsymmetric) linear solver is
preconditioned GMRES.
•"Only small subset of calculations need to be
reliable.
–"GMRES is iterative, but also direct.

87

Every calculation matters

•" Small PDE Problem: ILUT/GMRES
•" Correct result:35 Iters, 343M

FLOPS
•" 2 examples of a single bad op.
•" Solvers:

–" 50-90% of total app operations.
–" Soft errors most likely in solver.

•" Need new algorithms for soft errors:
–" Well-conditioned wrt errors.
–" Decay proportional to number of errors.
–" Minimal impact when no errors.

Description Iters FLOPS Recursive
Residual
Error

Solution Error

All Correct
Calcs

35 343M 4.6e-15 1.0e-6

Iter=2, y[1] +=
1.0
SpMV incorrect
Ortho subspace

35 343M 6.7e-15 3.7e+3

Q[1][1] += 1.0
Non-ortho
subspace

N/C N/A 7.7e-02 5.9e+5

88

Soft Error Resilience

•" New Programming Model
Elements:
•" SW-enabled, highly reliable:

•" Data storage, paths.
•" Compute regions.

•" Idea: New algorithms with
minimal usage of high reliability.

•" First new algorithm: FT-GMRES.
•" Resilient to soft errors.
•" Outer solve: Highly Reliable
•" Inner solve: “bulk” reliability.

•" General approach applies to
many algorithms.

M. Heroux, M. Hoemmen!

FTGMRES Results

89!
1 2 3 4 5 6 7 8 9 10 11

10!8

10!6

10!4

10!2

100

Outer iteration number

Fault!Tolerant GMRES, restarted GMRES, and nonrestarted GMRES
(deterministic faulty SpMVs in inner solves)

FT!GMRES(50,10)
GMRES(50), 10 restart cycles
GMRES(500)

Quiz (True or False)

5." DRY is not possible across CPUs and GPUs.
6." Extended precision is too expensive to be useful.
7." Resilience will be built into algorithms.

Bi-Modal: MPI-only and MPI+[X|Y|Z]

91

Parallel Machine Block Diagram

Memory!

Core 0! Core n-1!

Node 0!

Memory!

Core 0! Core n-1!

Node 1!

Memory!

Core 0! Core n-1!

Node m-1!

–" Parallel machine with p = m * n processors:
•" m = number of nodes.
•" n = number of shared memory processors per node.

–" Two ways to program:
•" Way 1: p MPI processes.
•" Way 2: m MPI processes with n threads per MPI process.

-" New third way:
•" “Way 1” in some parts of the execution (the app).
•" “Way 2” in others (the solver).

92

Multicore Scaling: App vs. Solver

Application:
•"Scales well

(sometimes superlinear)
•"MPI-only sufficient.

Solver:
•"Scales more poorly.
•"Memory system-limited.
•"MPI+threads can help.

* Charon Results:
 Lin & Shadid TLCC Report

93

MPI-Only + MPI/Threading: Ax=b

App!
Rank 0!

App!
Rank 1!

App!
Rank 2!

App!
Rank 3!

Lib!
Rank 0!

Lib!
Rank 1!

Lib!
Rank 2!

Lib!
Rank 3!

Mem!
Rank 0!

Mem!
Rank 1!

Mem!
Rank 2!

Mem!
Rank 3!

Multicore: “PNAS” Layout!

Lib!
Rank 0!
Thread 0 Thread 1 Thread 2 Thread 3!

App passes matrix and vector values to library data classes!

All ranks store A, x, b data in memory visible to rank 0!

Library solves Ax=b using shared memory algorithms!
on the node.!

94

MPI Shared Memory Allocation

Idea:
•" Shared memory alloc/free

functions:
–" MPI_Comm_alloc_mem
–" MPI_Comm_free_mem

•" Predefined communicators:
MPI_COMM_NODE – ranks on node
MPI_COMM_SOCKET – UMA ranks
MPI_COMM_NETWORK – inter node

•" Status:
–" Available in current development

branch of OpenMPI.
–" First “Hello World” Program

works.
–" Incorporation into standard still

not certain. Need to build case.
–" Next Step: Demonstrate usage

with threaded triangular solve.
•" Exascale potential:

–" Incremental path to MPI+X.
–" Dial-able SMP scope.

95

int n = …; !
double* values;!
 MPI_Comm_alloc_mem(!
 !MPI_COMM_NODE, // comm (SOCKET works too)!

!n*sizeof(double), // size in bytes!
!MPI_INFO_NULL, // placeholder for now !
!&values); ! // Pointer to shared array (out)!

// At this point:!
// - All ranks on a node/socket have pointer to a shared buffer (values).!
// - Can continue in MPI mode (using shared memory algorithms) or !
// - Can quiet all but one:!
int rank;!
MPI_Comm_rank(MPI_COMM_NODE, &rank);!
if (rank==0) { // Start threaded code segment, only on rank 0 of the node!
…!
}!

 MPI_Comm_free_mem(MPI_COMM_NODE, values);!

Collaborators: B. Barrett, Brightwell, Wolf - SNL; Vallee, Koenig - ORNL !

Algorithms and Meta-Algorithms

Communication-avoiding iterative methods
•" Iterative Solvers:

–" Dominant cost of many apps (up to 80+% of runtime).
•" Exascale challenges for iterative solvers:

–" Collectives, synchronization.
–" Memory latency/BW.
–" Not viable on exascale systems in present forms.

•" Communication-avoiding (s-step) iterative solvers:
–" Idea: Perform s steps in bulk (s=5 or more):

•" s times fewer synchronizations.
•" s times fewer data transfers: Better latency/BW.

–" Problem: Numerical accuracy of orthogonalization.
•" New orthogonalization algorithm:

–" Tall Skinny QR factorization (TSQR).
–" Communicates less and more accurate

than previous approaches.
–" Enables reliable, efficient s-step methods.

•" TSQR Implementation:
–" 2-level parallelism (Inter and intra node).
–" Memory hierarchy optimizations.
–" Flexible node-level scheduling via Intel Threading Building

Blocks.
–" Generic scalar data type: supports mixed and extended

precision.

TSQR capability:
•" Critical for exascale solvers.
•" Part of the Trilinos scalable multicore

capabilities.
•" Helps all iterative solvers in Trilinos

(available to external libraries, too).
•" Staffing: Mark Hoemmen (lead, post-

doc, UC-Berkeley), M. Heroux
•" Part of Trilinos 10.6 release, Sep 2010.

LAPACK – Serial, MGS –Threaded modified Gram-Schmidt

Advanced Modeling and Simulation Capabilities:
Stability, Uncertainty and Optimization

•" Promise: 10-1000 times increase in parallelism (or more).

•" Pre-requisite: High-fidelity “forward” solve:
–" Computing families of solutions to similar problems.
–" Differences in results must be meaningful.

SPDEs: Transient
Optimization:

 - Size of a single forward problem

Lower Block
Bi-diagonal

Block
Tri-diagonal

t0

t0

tn

tn

Advanced Capabilities:
Readiness and Importance

Modeling Area Sufficient
Fidelity?

Other concerns Advanced
capabilities priority

Seismic
S. Collis, C. Ober

Yes. None as big. Top.

Shock & Multiphysics
(Alegra)
A. Robinson, C. Ober

Yes, but some
concerns.

Constitutive models,
material responses
maturity.

Secondary now. Non-
intrusive most
attractive.

Multiphysics
(Charon)

J. Shadid

Reacting flow w/
simple transport,
device w/ drift
diffusion, …

Higher fidelity, more
accurate multiphysics.

Emerging, not top.

Solid mechanics

K. Pierson

Yes, but… Better contact. Better
timestepping. Failure
modeling.

Not high for now.

Advanced Capabilities:
Other issues

•"Non-intrusive algorithms (e.g., Dakota):
–"Task level parallel:

•"A true peta/exa scale problem?
•"Needs a cluster of 1000 tera/peta scale nodes.

•"Embedded/intrusive algorithms (e.g., Trilinos):
–"Cost of code refactoring:

•"Non-linear application becomes “subroutine”.
•"Disruptive, pervasive design changes.

•"Forward problem fidelity:
–"Not uniformly available.
–"Smoothness issues.
–"Material responses.

Advanced Capabilities:
Derived Requirements

•" Large-scale problem presents collections of related subproblems with
forward problem sizes.

•" Linear Solvers:
–" Krylov methods for multiple RHS, related systems.

•" Preconditioners:
–" Preconditioners for related systems.

•" Data structures/communication:
–" Substantial graph data reuse.

Accelerator-based Scalability Concerns

Global Scope Single Instruction Multiple
Thread (SIMT) is too Restrictive

102

If FLOPS are free,
why are we making them cheaper?

103

Larry Wall:
Easy things should be easy, hard

things should be possible.

Why are we making easy things
easier and hard things impossible?

104

Explicit/SIMT vs. Implicit/Recursive Algorithms

Problem Difficulty!
Easy! Hard!

Ti
m

e
to

 S
ol

ut
io

n!

Implicit/Recursive:!
•" Implicit formulations.!
•" Multilevel prec.!

Explicit/SIMT:!
•" Explicit formulations.!
•" Jacobi prec.!

Problems with Accelerator-based Scalability
•"Global SIMT is the only approach that really works well on GPUs, but:

–"Many of our most robust algorithms have no apparent SIMT
replacement.

–"Working on it, but a lot to do, and fundamental issues at play.
•"SMs might be useful to break SIMT mold, but:

–" Local store is way too small.
–"No market reason to make it bigger.

•"Could consider SIMT approaches, but:
–" Broader apps community moving the other way:

•" Climate: Looking at implicit formulations.
•" Embedded UQ: Coupled formulations.

•"Accelerator-based apps at risk?
–" Isolation from the broader app trends.
–" Accelerators good, but in combination with strong multicore CPU.

Summary

•" Some app targets will change:
–" Advanced modeling and simulation: Gives a better answer.
–" Kernel set changes (including redundant computation).

•" Resilience requires an integrated strategy:
–" Most effort at the system/runtime level.
–" C/R (with localization) will continue at the app level.
–" Resilient algorithms will mitigate soft error impact.
–" Use of validation in solution hierarchy can help.

•" Building the next generation of parallel applications requires enabling
domain scientists:

–" Write sophisticated methods.
–" Do so with serial fragments.
–" Fragments hoisted into scalable, resilient fragment.

•" Success of manycore will require breaking out of global SIMT-only.

Quiz (True or False)

1." MPI-only has the best parallel performance.
2." Future parallel applications will not have MPI_Init().
3." Use of “markup”, e.g., OpenMP pragmas, is the least

intrusive approach to parallelizing a code.
4." All future programmers will need to write parallel code.
5." DRY is not possible across CPUs and GPUs
6." CUDA and OpenCL may be footnotes in computing history.
7." Extended precision is too expensive to be useful.
8." Resilience will be built into algorithms.
9." A solution with error bars complements architecture trends.
10."Global SIMT is sufficient parallelism for scientific computing.

