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ABSTRACT

The Probabilistic Event Detection, Association and Location algorithm (PEDAL) is a new approach to the problem
of associating isolated seismic observations from a network of stations into a list of hypothesized seismic events 
consistent with those observations. In our method, the Earth is discretized into a dense 3D grid of nodes that spans 
the globe from the surface down to the maximum depth at which earthquakes are likely to occur. The grid is 
extended to 4D by the addition of a time dimension. Given a set of seismic observations within a 23-minute time 
window, a network ‘fitness’ value is calculated at each grid node by summing the station-specific conditional 
fitnesses, which are proportional to the conditional probabilities that each observation was generated by a seismic 
event at the grid node and assuming that each observation was generated by a refracted P wave. The node with the 
highest fitness value is accepted as a hypothetical seismic event location, subject to some minimal fitness value, and 
all seismic arrivals within a 40-minute time window that are consistent with that event are associated with it. During 
this association step, the assumption that the arrival was a direct P arrival is relaxed and many different phases are 
considered. Once an arrival is associated with an event, it is removed from further consideration. While there are 
still unassociated arrivals, the search is repeated to find other hypothetical seismic events until no more seismic 
events are identified that satisfy the minimum fitness criteria.

Because the exhaustive search approach is computationally expensive, we have implemented the algorithm on 
Graphics Processing Units (GPUs), thereby achieving performance levels needed to meet the requirements of real 
time monitoring systems like the CTBTO's IDC, while still running on a single machine. We evaluate performance 
relative to current association algorithms by processing an interval of IMS data, and comparing our results to both 
the SEL3 and LEB bulletins. 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security 
Administration under contract DE-AC04-94AL85000.
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OBJECTIVES

The objective of this work is the development of an improved system to address the identification of seismic events 
from a stream of monitoring station observations (detections and corresponding feature measurements). Generalized 
Association, the current seismic event association technology in use by the Comprehensive Test Ban Treaty 
Organization (CTBTO) for their International Data Center (IDC), is almost 15 years old (Le Bras, et al. 1994), 
predating some important innovations in computer software and hardware. While this easily parallelizable technique 
was an improvement over the previous rule-based expert system approach that scaled poorly with large numbers of 
station signal detections, it has proven difficult to tune, and the quality of the IDC automatically produced bulletin 
(SEL3) has changed little over the past decade, suggesting that a new approach is warranted. We believe that the 
association problem could benefit greatly from new algorithms that exploit modern data and computational 
resources. The availability of many years of historical data (observables) for known sources and the steady 
improvement in advanced algorithms, such as machine learning techniques, as well as the considerable advances in 
computational power provide an opportunity to address the automated association problem in a new manner. A set 
of observables readily available from IDC database tables, such as arrival time and amplitude, signal-to-noise ratio, 
slowness, and azimuth, from all monitoring stations over a window of time (e.g., 1 hour) can be combined in 
elemental and differential form to create a global feature vector representing all source events occurring in the 
specified time window. Key to accurate event identification is comparing the differences in time and other features
of seismic phases received at various monitoring stations in proximity of the actual source event: the relative 
patterns seen between stations are characteristic of signals coming from a particular source location. Information 
from historical analyst-reviewed event bulletins can be used as ground-truth target information to develop and test 
an algorithm that maps these arrival features to event probabilities for a given location. This is of great importance 
because accurately locating a seismic event in 3-dimensional space (latitude, longitude, depth) is a key step in 
identifying nuclear explosions.

RESEARCH ACCOMPLISHED

Introduction

When a nuclear explosion occurs below the surface of the Earth, signals created by the source propagate through the 
Earth and are recorded by a network of sensors measuring ground motion. To identify such an event, data must be 
carefully processed through a standard series of steps. First, data from each sensor are processed separately to find 
signals of interest, then the set of signals from the full network are associated to generate hypothetical events (times 
and locations) that can account for the signals. Next, magnitudes (sizes or yields) of the events are estimated, along 
with likely source type (e.g. earthquake or explosion). All of this is done automatically, but due to the complexity of 
the problem and poor station coverage for many areas of the world, particularly for smaller events, the automatic 
results must be reviewed carefully by an analyst and any errors/omissions must be corrected before further action 
will be taken on any events of interest for nuclear explosion monitoring. Nuclear explosions are rare, but other types 
of seismic events (e.g. earthquakes) are not and identifying event type with seismic data is difficult, so the number 
of events to be examined each day is large (typically more than 100).

All of the processing steps are important, but association of the signals to form the events is perhaps the most 
challenging and critical. The associator produces the list of event hypotheses which must be reviewed by the 
analysts to determine if any nuclear explosions have occurred, so the amount of work that the analysts must do is 
directly controlled by the associator. Further, the association step typically controls the level at which the station 
signal detection thresholds are set, because the number of possible event hypotheses scales exponentially with the 
number of detections. Thus, setting very low station thresholds (so as not to miss an explosion), can overwhelm the 
associator, slowing or even stopping the data processing flow. An ideal associator would be able to efficiently 
process very large numbers of detections, hence allowing station detection thresholds to be set as low as possible, 
but would also produce only very high quality events, requiring minimal analyst review. In reality, a compromise 
must be chosen between missing legitimate events and creating false events that will be rejected by analysts.

PEDAL Earth Grid

Dividing the Earth into a 3D grid of location nodes, each node will have a unique feature signature to estimate the 
probability that a seismic event occurred at that location and generated a subset of the observations in the feature 
vector. We use a uniform grid spacing of 0.5 degrees at the surface of the Earth (Figure 1). In addition, we add 
additional depth nodes in regions where deep seismicity has occurred in the past (Figure 2). Altogether, this gives us 



a total of 383,753 nodes to cover the Earth, which is a significant computational challenge. Fortunately, since each 
node has a unique set of predicted observables, both algorithm development (i.e., training) and operational use are 
fully parallelizable. A further complication that must be addressed specifically for the nuclear monitoring 
application is that many of the  node locations will not have historical data available because seismicity has a limited 
distribution. Training data for these nodes must be extrapolated from other nodes or generated using modeling. 
Determining which approach is most appropriate is an important goal of our research.

Figure 1. Left: Coarse event location grid (4).  Right: Actual ½ grid spacing (over southeastern United 
States).

Figure 2. Depth grid based on seismicity.

Event Detection and Location using Spatial Fitness

Hypothetical events are located by identifying the largest "fitness" value calculated for each of the nodes in the 
PEDAL Earth grid. Consider an arbitrary grid node ω and event origin time To and a single arrival Ai, from station 



Si, that includes observations (attributes) of arrival time (Ti.), azimuth (azi), and horizontal slowness (shi). The 
conditional fitness, proportional to the probability that Ai was generated by a seismic event, Eω,T0, which occurred at 
(ω, To), is given by
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where pt,i,ω, paz,i,ω and psh,i,ω are the expected travel time, azimuth and horizontal slowness for an event at ω, and εt,i,ω, 
εaz,i,ω, and εsh,i,ω, are tolerance values. Figure 3 shows a plot of the implied Gaussian distribution associated with each 
attribute. Note that the product of the attribution distributions will at most be equal to the maximum individual 
attribute value. Therefore, if any attribute value is small, then the contribution to spatial fitness will be small.

Figure 3. General attribute distribution: P(ai, E) = probability of arrival attribute ai from station i caused 
by an event at location .

Spatial Fitness using Pairs of Arrivals

For computational efficiency, PEDAL uses pairs of arrivals to compute the spatial fitness values at each grid node. 
For all events Eω, (Ti – Tj) observed at two stations Si and Sj is independent of event origin time. So the joint fitness
of any two arrivals is
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where subscripts t refer to travel time and T to arrival time. Now we sum the conditional fitnesses of all pairs of 
arrivals in a specified time interval (23 minutes)
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and search 3D grid space for the point with the highest Fω. Note that if there are arrivals from more than one event 
in the time interval (not uncommon for a global monitoring system), then there will be multiple peaks in the 3D grid 
space. Our goal at this stage is to find the overall highest peak, i.e. the event with the most arrivals.

Once the overall peak has been found, the next step in PEDAL is to search the time axis for an origin time, To, with 
maximum temporal fitness.
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Thus, we have identified both the spatial and temporal position of an event in our time sequence.

Association of Arrivals with Events

After an event, Oω,To, is detected, located, and its origin time established, the arrivals that this event generated are 
identified and associated with the event. Given a detected event at location ω and origin time To, we associate 
arrivals with Oω,To using phase-specific predictions and tolerance values.
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For each unassociated arrival in current time window, we find the phase, ph, for which Fph,ω,To is greatest. If Fph,ω,To

is greater than an established threshold, then we associate the arrival with Oω,To and remove arrival from the 
window.

Once all the appropriate arrivals have been associated with the current event, we recalculate the fitness for the 3D 
grid with the remaining arrivals and look for another peak. The process of identifying events and associating arrivals 
based on travel time, azimuth, and slowness continues until there are less than two arrivals in the window or the 
peak spatial fitness is less than an established threshold. 

At this point, one final association step is performed, based solely on travel time, in an attempt to sweep up any 
remaining arrivals that can be associated with our events. The fitness value is computed for each detected event and, 
assuming the highest fitness value is greater than an established threshold, the arrival is associated with the event 
having the highest fitness.
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PEDAL Process



For the following discussion, refer to 

Figure 4 and Figure 5. The idea is to process a time interval of detections, and from these find events to add to the 
event bulletin. However, we do not want to add an event to the bulletin unless we are certain that there are no 
additional arrivals that might be in the next interval to process, i.e. that the event is truly "final" or complete. We, 
therefore, establish three consecutive time windows to describe origins at varying degrees of processing.

1. Preliminary Origins – This time window includes origins that have been detected by virtue of peak spatial 
fitness, but are preliminary because their origin times are greater than t-23 minutes or their sets of 
associated arrivals do not pass the trusted origin criteria given below. Preliminary origins will be labeled as 
such, but their associated arrivals will be returned to the arrival list so that this origin can be detected again 
in the next time interval, potentially with a richer set of arrivals contributing to its detection.

2. Trusted Origins – This time window includes origins that are considered trusted because its set of arrivals 
passes the trusted origin criteria, but their origin times are such that additional arrivals of secondary phases 
associated with them could exist in the future (next time interval). Note that trusted origins cannot have any 
more first-P arrivals associated with them.

3. Completed Origins – This time window includes origins that are considered complete and final because all 
possible arrivals that could be associated with these origins have been seen by virtue of their origin times 
and the travel time of the latest arriving expected secondary phases (TSmax).

For our testing, PEDAL operates on IDCX arrivals in the 33-minute Spatial Fitness Arrival Window, A’, from 151 
primary and secondary IMS seismic stations (

Figure 4). For the spatial fitness calculation, first-P predictions are used and first-P arrivals take a maximum of 23 
minutes to travel from any grid node to a station on the opposite side of the Earth, hence all arrivals within a 23-

minute window must be processed. However, because we will be trying to find events within a 10-minute span (the 
Discard Window), the total arrival window to process is 23+10 = 33-minutes. Following identification of the 

location of a hypothetical event, the origin time is computed using first-P predictions and arrivals in the Spatial 
Fitness Arrival Window (see the Origin Time Window in 

Figure 4). At this point, association of all arrivals is performed on the hypothetical event. All associated arrivals are 
removed from the arrival list and a search for new hypothetical events is repeated until no more seismic events are 
identified that satisfy the minimum fitness criteria.

Figure 4.  PEDAL arrival and time windows.

As we discussed above, once all hypothetical events have been indentified for the current time window, a final 
association step is performed based on arrival time fitness alone. Each remaining unassociated arrival is fitted with 



each hypothetical origin and the arrival is associated with the origin that results in the highest fitness, assuming a 
minimal fitness threshold. At this point, we are ready to move on to the next time interval. First, however, we must 
add to the final event bulletin events that satisfy the following criteria. 

Trusted Origin Criteria:  Test each hypothetical origin against the following criteria, in order:
 At least one of its associated arrivals is in the Discard Window. This indicates that the event cannot have 

additional P arrivals beyond A'. If there is not at least one associated arrival in the Discard Window, then 
return all arrivals to A’. This event will likely get formed again in the next processing interval.

 Has at least two associated arrivals (as a result of the previous step, at least one of them will be in the 
Discard Window). This test insures that all events must have more than one associated arrival. If so, then 
add origin to the permanent set of origins. If there are not two or more associated arrivals, then return all 
arrivals to A’. This event will likely get re-built in the next processing interval.

Arrivals associated with origins that don’t satisfy the criteria are placed back into the arrival list, A’, to be processed 
in the next time interval or permanently stored as unassociated arrivals, depending on the arrival times. The entire 
iterative PEDAL process is depicted in a flowchart in Figure 5.

Step forward in 
time by 10 minutes

Associate arrivals with origin based on phase-
specific time, azimuth, & slowness predictions.

Add origin to set of hypothetical origins.

Find most likely time of origin from arrivals 
and first-P travel time predictions.

Find most likely hypothetical origin location from arrivals 
and first-P travel time, azimuth, & slowness predictions.

Process arrivals in 33-minute interval

Attempt association of remaining arrivals  with all origins 
based just on phase-specific travel time predictions.

Keep origins with at least 1 arrival older than 23 
minutes AND at least 2 associated arrivals

For origins that aren’t kept, return associated arrivals to A

Assign unassociated arrivals older than 23 
minutes to Set of Unassociated arrivals

Hypothetical
event detection, 
location, & timing

Final event 
association
& evaluation

Look for more origins if there are remaining unassociated arrivals.

Figure 5.  PEDAL flowchart.

Computational Issues and GPUs

Although the calculation of the spatial fitness values must be done for each of the 383,753 grid nodes, each grid 
node’s calculation is independent of all the others, so the problem is fully parallelizable. Each node has a unique set 
of prediction values (expected value and tolerance) for each attribute (travel time, azimuth, and slowness) and for 



each of 151 stations. This results in a memory requirement to store all predictions of ~1.3 gigabytes. During PEDAL 
operation, each node will use the same set of arrivals in its computation as every other node.

The spatial fitness calculation requires prediction values (expected values and tolerances) of first-P travel time, 
azimuth, and slowness at every node for each station. The spatial fitness calculation is O(n2), where n is the total 
number of arrivals. For n = 100, the calculation involves evaluation of the exponential function approximately 2
billion times. For n = 500, it must be evaluated approximately 47 billion times. Recall that PEDAL performs the 
spatial fitness calculation in three dimensions followed be a temporal fitness calculation in one dimension. 
Calculation of fitness in four dimensions over a 70 minute window with 0.1 second time steps would require the 
evaluation of the exponential function approximately 2 quadrillion times, hence our preference for considering pairs 
of arrivals.

Because the exhaustive search approach is computationally expensive using sequential processing, we use Graphics 
Processing Units (GPUs) to perform this task. We currently use an NVidia Tesla C1060 Computing Processor 
Board, which has 240 processor cores and 4 gigabytes of memory. Figure 6 shows the extreme difference in 
computational cost between sequential and parallel processing of the spatial fitness function. Figure 7 shows the 
impact of using multiple GPU boards for the spatial fitness calculation.

Figure 6.  Sequential processing vs. GPU processing.
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Figure 7.  Processing with different numbers of GPUs.

Performance Evaluation and Experimental Results

PEDAL was evaluated on a 60-minute window of IDCX arrivals from December 18, 2008, where 5 origins of a 
variety of magnitudes exist in the LEB. 

Figure 8 shows a map of these events along with their magnitudes and number of associated arrivals, which is a 
more robust measure of the quality of an event. We show LEB, SEL3, and PEDAL results. Where the bulletin 
events are in nearly the same location, a single black circle is shown. Where they deviate, separate symbols are 
shown for LEB (red), SEL3 (cyan), and PEDAL (green). In the accompanying text boxes, the number of associated 
arrivals is shown for each bulletin.  Classifying these events by the LEB number of associated arrivals, we can see 
that both PEDAL and GA (SEL3) clearly find the NASS=149, 62, and 62 events. We note that the number of 
associated phases for PEDAL is much higher than either LEB or GA, probably reflecting some incorrect secondary 
phase associations. Event detection using first-P phase predictions has been the focus of development for PEDAL 
thus far. Our attention will turn next to high quality association of secondary phases. PEDAL and GA also seem to 
find the NASS=3 event in the SW Pacific, although with imprecise location, but PEDAL does struggle with the 
NASS=6 event in Indonesia. It identifies two events, the “average” of which may result in a good detection. Post 
processing of event detections and phase associations is another important area of future work. Finally, GA detects 
two extraneous events in northern Europe.

For more insight, Figure 9 shows the results of four iterations of the PEDAL process. At each iteration of the 
PEDAL event detection, location, and association process, one can see the location of the largest spatial fitness, 
indicating the largest event resulting from the current set of arrivals and other smaller peaks that are hints of other 
events of lesser magnitude. At iteration 2, arrivals associated with the previously identified event in Iteration 1 are 
no longer available for the current spatial fitness calculation. By iteration 4, it is difficult to identify peaks (potential
real events) above the background, though we can still see the peak corresponding to the event at the northern edge 
of South America. After removal of this event, identification of the next highest peak is very ambiguous. Therefore, 
a spatial fitness threshold is used as a criteria to indicate when to advance the PEDAL time window into the future.

Evaluating the performance of an associator is a very difficult task. Establishing the true set of detectable events is 
generally not clear. Even deciding that events from two different bulletins are the same is not always 
straightforward. Evaluating proper associations is challenging as well. PEDAL processed arrivals in approximately 
20 minutes using a single GPU in a desktop computer and generated 7 events, matching all 5 of the LEB events to 
some degree, but also clearly generating some false events. Both SEL3 and PEDAL are tuned to not miss legitimate 



events. As a result, it is not uncommon for the automated systems (SEL3 and PEDAL) to find multiple events near 
an event listed in LEB after review by analysts. Therefore, one next step is to develop an algorithm for combining 
events that are close together in both time and space. Utilizing historical data in establishing the probability that an 
event originate from a particular location on the Earth is another capability that will greatly improve PEDAL’s 
ability to eliminate bogus events while retaining legitimate ones. 

Figure 8.  Associator results from a 60-minute time window on 12/18/2008 with 5 LEB events in red and 
black. Black points indicate that PEDAL and SEL3 detected events collocated with the LEB event. Green 
(PEDAL) or cyan (SEL3) dots close to a black dot indicate an additional “split” event by the associator.

Figure 9.  Spatial fitness maps from first four iterations of PEDAL.
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We are developing a new signal association algorithm using exhaustive search of 4-dimensional parameter space (3 
spatial dimensions and time). We identify event locations from the maximum ‘fitness’ assuming all arrivals are P
phases. Associations of arrivals to located events are based on the maximum fitness over all possible phases. Where 
historical data exists, empirical expected values and tolerances are established for use in the fitness calculations. The 
use of GPUs allows PEDAL to run in real-time on a desktop computer.

Performance on small time windows of IDCX arrivals is promising. However, testing over large periods of time that 
includes large events and aftershock sequences is necessary. Various parameters used in the PEDAL process must 
be optimized for peak performance. An important task that we must address for measuring associator performance is 
the establishment of a good metric for evaluating the quality of PEDAL processing, which must consider both 
missed events and false events. Also, we will develop a method to allow us to calculate the probability that an event 
actually occurred for each of the events that PEDAL produced. While we know that fitness is proportional to 
probability, the proportionality relationship is not simple. Actual probabilities will be much easier to interpret than 
fitness values in deciding what to do with an event produced by PEDAL. Further, a Bayesian probabilistic 
calculation should allow us to incorporate important prior information on the likelihood of events occurring in 
specific regions, which is definitely not the same for all locations.
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