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Diffusion Monte Carlo calculations of
xenon and krypton at high pressure
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Ab Initio Calculations of Materials under Extreme
Conditions (approach from low temperature)

* Density Functional Theory (DFT)
— Most Common Tool : Generally Successful
— Accuracy Limitations
 Exact functional not known
* New generation functionals have shown large
improvements
— Computational Efficiency

, , Melting of Xe under pressure
* Computationally expensive :
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One minute introduction to quantum Monte Carlo

* Quantum Monte Carlo is an appealing alternative

— Use stochastic projection to solve many body Schrodinger equation exactly

— Only uncontrolled approximation, fixed node approximation, does not involve
Hamiltonian (interactions)

— Limitations
 Significantly more expensive than DFT
* Forces not currently available

* Only norm-conserving pseudopotentials
* Only zero temperature electrons

"U e Use configurations from quantum MD calculations
l — Assess the ability of DFT to determine proper energy

landscape
— Use thermodynamic integration approach of Sola et al
to estimate change in melting temperature
— Sola and Alfe, PRL. 130, 078501 (2009)

— Assume electronic excitations are treated appropriately
- within DFT

J. Needs, M. D. Towler, N. D. Drummond,
and P. Lopez-Rios, Casino Version 2.2
User Manual, University of Cambridge ,

Cambridge (2008) /
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Xe melting: disagreement between DAC and DFT

* Disagreement between melting under pressure between DAC, ab initio
calculations and shock measurements is common

— See for example Ta, Fe, MgO and Xe 6000 —
* Many sources of uncertainty 5000 | A
~ bAC <
* Anisotropic Stress, Reactivity, > 4000 o
Ambiguous Phase Assignment 2 3000 | . w,..-s.n. N
— Shock “g’ ‘ﬁ
. 2000 | &4 Boehler et al. 2001 (DAC) |
Ten?p.erature measurements 2 £ Shlereta. 2008 ED N Cg .
— Ab Initio / Saija and Prestipino, 2005 (Calculation) v
. . 1000 | ~ Belonoshko et al. 2006 (Calculation) ~——+{—
* DFT Approximations, convergence
* Xe : Demanding for ab initio ® 0 10 20 30 40 50 60 70 80 90
— Van der Waals effects in DFT Pressure (GPa)

— Low number density requires large simulation cells

— But the Hugoniot was calculated and measured with great accuracy and agreement
* Root etal. PRL 105, 085501 (2010)

» Constrained EOS at high temperatures and pressures
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QMC errors are small for solid Xe

* FCC equation of state
— LDA - no long range correlation, but self interaction in low density regions
— AMO5 - subsystem based functional, van der Waals is completely absent
— DMC with nodes and pseudopotentials taken from above calculations
» Very small dependence on DFT trial wavefunction

FCC energies of Xe using diffcrent methods
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Thermodynamic Integration approach to melting:
using QMC to refine DFT

* Use thermodynamic integration to calculate relative change in Helmholtz
free energy going from DFT to QMC
1
|
2k, T

B

AF = jd/1<AU>x ~ <AU>,1=0 B <(AU _<AU>,1=0)2>,1=0

* The change in melting temperature between DFT and DMC is
AGZS
ls
SDFT
* Assume that difference in dynamics between DFT and DMC is small

(fluctuation terms above are small)

AT =~

AG ~ AF —VAp® /2K,

» Extract snapshots from liquid and solid phase and calculate change in
melting temperature
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DMC calculations of solid and liquid snapshots

¢ 20 snapshots from 108 atom solid
and liquid LDA runs at 6000 K

¢ Fluctuations of QMC energy about
LDA energies are small

energy (ev/ Xe)

e Energy difference between liquid
and solid 0.0406 +/- 0.0027 eV /
Xe greater in DMC

e Assuming a rigid shift of the
enthalpy curves = Increase in
melting temperature by
470 +/- 30 K at 73 Gpa

e Magnitude of correction similar to
Sola and Alfe. PRL 130, 078501
(2009)

energy shift (ev / Xe)
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QMC revised melt curve for Xe:

* We found that diffusion Monte Carlo can accurately treat Xe under pressure
— Pseudopotential Approximation is small
— Fixed node approximation is likely a small error

* Relative energies from DFT/LDA are accurate compared to DMC near 1 Mbar
* Errors in total energies from DFT/LDA will increase melting temperature

* Simon melt curve fit to two QMC points and ambient experimental data
— Agrees with DAC at low pressure
— Conflicts at high pressures
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Validation of Method: Melting of Aluminum

* Shock and DAC melt agree at high pressure

* DFT (2 phase approximation)
accurately reproduces melt curve

* Thermodynamic integration from DFT
to QMC gives a shift of only 18 K !
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QMC can be used to choose between DFT
functionals

10

QMC is not yet practical for MD
simulations

There is no a priori way to choose

the functional for a DFT calculation

— Moving higher levels of approximation
does not guarantee higher accuracy

Can choose to reproduce experimental

values
— Lose predictive capability

— Experimental data is not always available or

reliable

Can choose functional that best
reproduces results from a more
accurate method

Table 1. Overview of selected popular XC functionals. X is the
exchange functional, C the correlation functional.

Funetional  Authors Ref.
Local Density Approximation (LDA) (I)
SVWNI X: Slater e
C: Vosko, Wilk, Nusair B
PW! Perdew, Wang 25
Generalized Gradient Approximation (GGA) (1)
BP&6 X Becke 1
C: Perdew 20
BLYP X Becke 18
' Lee, Yang, Parr 16
PWa1 Perdew, Wang .28
PBE Perdew. Burke, Ernzerhof "
PBEsol Perdew. Ruzsinszky et al. =
RPBE Hammer, Hansen, Norskov B
SOGGA  Zhao, Truhlar »n

Meta-Generalized Gradient Approximation (meta-GGA) (I1I)

TPSS Tao, Perdew, Staraverov, Scuseria
Hybrid Functionals {IV)

BiLYD Becke 1519
PEBED Perdew, Ernzerhof, Burke 3
HSE Heyd, Scuseria, Ernzerhof 2
BO7 Becke *
TPSSh Staroverov, Scuseria, Tao, Perdew #13%
Fully nonlocal functionals (V)

RIPA Bohm, Pines %
B2PLYP  Grimme #

“Hoth SVWN and PW are different parameterizations for the exchange-correlation

energy of uniform electron gas and give almost identical results.

D. Rappoport et al. in Encyclopedia of Inorganic
Chemistry. R.B.Kinget al eds. Wiley (2009)
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LDA a poor choice for initial condition of Kr Hugoniot

* Take snapshots from material
at initial conditions using
QMC with various
functionals

* Calculate total energies of
snapshots with QMVIC

* Compare relative energies
* AMOS is better choice
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Understanding LDA’s failure for low density Kr

e AMO5’s relative success vs LDA can be understood from cold curve

* LDA predicts negative
pressure at this volume

* Negative pressure leads
to clumping 16

* AMO05 and QMC have 14
positive pressure 12
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QMC provides an exciting avenue for understanding
materials under extreme conditions

* Accuracy is consistent across a wide variety of materials and states
 Parallel scaling makes QMC appealing for petascale-class supercomputers
e Can be used to make an informed choice between DFT functionals

* Melting transition can be determined if DFT is “good enough”
— Thermodynamic integration yields higher melt line for Xe
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Importance of pseudopotential in QMC

* Must strip out core electrons to make problem computationally tractable
— Core does not contribute to chemistry at these pressures

 Validated norm conserving Xe pseudopotentials not widely available

* D-states well removed from valence, but d-projector is crucial
— Increasing d-hybridization suggested as cause of flat melt line
* Ross etal. PRL 95. 257801 (2005)

FCC energies ol LDA pseudopolenlials lor Xe
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Generating Snapshots with DFT

* Quantum MD calculations performed with VASP using the LDA functional
— Leverage two phase melt calculations by Belonoshko et al., PRB 2006

* Trial wavefunctions produced using quantum espresso

* 108 atom simulation cells to minimize finite size effects

 Ramp temperature starting from a solid and a liquid

* Perform long metastable simulations at phase coexistence point
* Monitor Pair Correlation function
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QMCPACK - Massively Parallel QMC

* Quantum Monte Carlo code designed for massive parallelism

* Developed by J. Kim et al at the University of lllinois Urbana-Champaign

* Hybrid MPI / OpenMP parallelism

— Shared Memory on Nodes, Distributed between
 Can efficiently scale to more than 100,000 CPU cores

* GPU port to CUDA with 15X speedup
Scaling on Jaguar_pf
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