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Crack in periodic box

I significant surface energy
unlike in most continuum
solutions

I a displacement pattern
characteristic of linear elastic
fracture mechanics (LEFM)

I the recovered Eshelby stress
field is smooth



Motivation

This work is based on the simple premise:

• consistent fields from MD
• continuum theory

}
→ nanoscale results

i.e. first connect atomistic statics or dynamics to continuum fields
in a manner consistent with balances then use continuum theory to
analyze the process.

There are many technologically relevant examples of the validity of
this approach down to the length-scale of nanometers and
hundreds of atoms.

In particular atomistic simulation is particularly suited to the
analysis of configurational forces.



Background

Connection between particle & continuum mechanics:

I [Irving&Kirkwood JChemPhys 1950], [Noll
JRatMechAnal 1955] correspondence of particle trajectories
& continuum fields through balance laws

I [Hardy JChemPhys 1982], [Murdoch IJEngSci 1993]
Extension of I&K to smooth kernels

• [Zimmerman JCompPhys 2010] referential/material
correspondence



Background

In addition to the well-known work of Eshelby(1951), Rice(1968),
Peach & Koehler (1950), there is history work on an atomistic
J-integral:

I [Inoue IJFrac 1994] path-dependent approximation to the
J-integral

I [Nakatani AIAAJ 1998], [Jin JNSNT 2005], [Khare PRB
2007] domain integral approach, examine appropriate
reference configuration.

I [Xu IJFrac 2004] finite-difference approximation of energy
release rate

I [Choi PhilMag 2007] alternative contour integral &
emphasis on cohesive zone development

• [Jones JMechPhysSol 2010] path-independent, T = 0
atomistic J-integral

• [Jones JPhysCondMat 2011] finite T , quasistatic J-integral



Eshelbian mechanics

The energy release rate relative to a process with a fixed reference
configuration

Π̇(ϕt(X),χ,F)− Π̇(X,χ,F) =

∫
∂W

∂X

∣∣∣∣
expl

· ϕ̇ dV

where ϕt(X) is a map describing the configurational change in the
reference, and

∂W

∂X

∣∣∣∣
expl

≡ ∂W (X,F)

∂X
=
∂W (X,F(X))

∂X
−∂W (X,F(X))

∂F
: ∇XF = ∇X·S

is work conjugate to the configurational change.

S is the Eshelby stress and the J-integral is the resultant force

J =

∫
∂Ω
SN dA =

dΠ

dX

∣∣∣∣
expl



Eshelbian mechanics

Eshelby stress is
S = ΨI− FTP

where

I Ψ is the (Helmholtz) free energy,

I F = ∇Xχ is the deformation gradient,

I P is the 1st Piola-Kirchhoff stress

notice these are a work-conjugacy triplet.

At zero temperature equilibrium

J =

∫
∂Ω
S N dA =

∫
∂Ω

ΨN− FTPN dA =

∫
∂Ω

W N−HTPN dA

where W is the internal energy, and H = ∇Xu is the displacement
gradient.



Hardy coarse-graining

Take Newton’s law
mαüα = fα

with mass mα, displacement uα and force fα = ∂xαΦ, and localize
with kernel ψ = ψ(x)∫

mαüα ψ dV =

∫
fα ψ dV

The left-hand side can be identified with a change in momentum

p(X, t) =

∫
mαu̇α(t)ψ(Xα − X) dV

and the right-hand side with a divergence of stress

∇X·P =

∫
fα ψ(Xα−X) dV =

∑
αβ

ψαfαβ =
1

2

∑
αβ

(ψα−ψβ)fαβ = . . .



Hardy

Instead of a truncated expansion for ∆ψ = ψα − ψβ, define an
exact relation

∆ψ = ∇Xψ ·∆X + . . . = ∇XB ·∆X

via Bαβ(X) =
∫ 1

0 ψ (λ(Xα − X) + (1− λ)(Xβ − X)) dλ to obtain
a stress

P(X, t) =

∫
fαβ ⊗ Xαβ Bαβ(X) dV

which is unique up to a solenoidal field.



Consistent fields
The estimation of three fields are necessary

I (stored) energy density:

W (X, t) =
∑
α

φα(t)ψ(X− Xα)−W (X)

where W (X) =
∑

α φ
X
αψ(X− Xα) and φX

α = φα({Xβ}) is the
PE in a fixed reference configuration {Xβ}.

I displacement gradient defined in mass-weighted fashion

u(X, t) =

∑
α (xα(t)− Xα) mαψ(Xα − X)∑

α mαψ(Xα − X)
,

consistent with momentum density p. With interpolation
u =

∑
I u(XI , t)NI (X) leads directly to

H = ∇Xu =
∑

I

uI (t)∇XNI (X) .

I stress
P(X, t) = −

∑
α<β

fαβ(t)⊗ XαβBαβ(X)



Consistency and Accuracy
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The Hardy measures satisfy

P = ∇FΨ

i.e. there is (thermodynamic)
consistency between the energy,
stress and deformation measures.

Also our use of partition of
unity/FE kernels (and interpola-
tion) can lead to faster and more
accurate estimates than with tra-
ditional kernels.



Crack tip with far field boundary conditions

displacement: atomic, Hardy,
LEFM

stress: Hardy, LEFM
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Finite temperature
At finite temperatures we need to revisit

J =

∫
∂Ω
〈Ψ〉N− 〈FTP〉N dA =

∫
∂Ω
〈Ψ〉N− 〈HTP〉N dA

and
P = ∂F|T Ψ

The free-energy Ψ is hard to calculate directly, instead we chose a
quasi-harmonic model

ΨQH = Φ0 +
kBT

V
log

n∏
i=1

~ωi

kBT

based on an assumed partition function, i.e.
∏
ωi =

√
det D, and

dynamical matrix

Dαβ ≡
V

√
mαmβ

∂2Φ

∂uα∂uβ
,



Consistency

In mechanical ∇X · P = 0 and thermal equilbrium ∇XT = 0, we
get

JT =

∫
∂Ω

Φ0N− 〈HTP〉N− 〈Θ〉N dA = J0 −
∫
∂Ω
〈Θ〉N dA

Thus, we can decompose the free-energy into the stored energy Φ
we used before plus a correction

ΨLH = Φ0 + ΘLH

where

ΘLH =
kBT

Vα
log

((
~

kBT

)3√
det DLH

)



Consistency
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Using thermodynamic integration

Ψ1 −Ψ0 =

∫ 1

0
P · dF +

∫ 1

0
S dT

and a variety of (homogenous)
loading conditions we verified that
the local harmonic model was suf-
ficiently accurate for our applica-
tion.



Finite temperature crack

Using thermalization of a sequence minimized states with far field
loading

we obtain fields that show localization together with thermal noise.



Finite temperature crack

path independence

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2

J 1
/2

 γ

KI / KIc

T=100 loop 0
T=100 loop 1
T=100 loop 2
T=100 loop 3
T=100 loop 4
T=300 loop 0
T=300 loop 1
T=300 loop 2
T=300 loop 3
T=300 loop 4
LEFM

temperature dependence

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2

J 1
/2

 γ

KI / KIc

T=0
T=10
T=100
T=300
T=600
T=900
T=1200
LEFM

results based on internal energy

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2

J 1
/2

 γ

KI / KIc

T=0
T=10
T=100
T=300
T=600
T=900
T=1200
LEFM

differences

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.2  0.4  0.6  0.8  1  1.2

J 1
/2

 γ

KI / KIc

T=10
T=100
T=300
T=600



Future work
The present work

I shows path-independence
I good agreement with theory
I straight-forward implementation

Present work could be extended to:

I full dynamics
I other potentials
I more accurate QH models
I amorphous solids

dislocation density

Right now we are working on connecting atomistic processes to
continuum plasticity , e.g. plastic strain, dislocation density with a
statistical ensemble of dislocations in MD.



Edge dislocation

stress: Hardy vs. LEFM

climb
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