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Crack in periodic box
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» significant surface energy
unlike in most continuum
solutions

» a displacement pattern
characteristic of linear elastic
fracture mechanics (LEFM)

» the recovered Eshelby stress
field is smooth



Motivation

This work is based on the simple premise:

e consistent fields from MD

) — nanoscale results
e continuum theory

i.e. first connect atomistic statics or dynamics to continuum fields
in a manner consistent with balances then use continuum theory to
analyze the process.

There are many technologically relevant examples of the validity of
this approach down to the length-scale of nanometers and
hundreds of atoms.

In particular atomistic simulation is particularly suited to the
analysis of configurational forces.



Background

Connection between particle & continuum mechanics:

> [IRVING&KIRKWOOD JChemPhys 1950], [NOLL
JRatMechAnal 1955] correspondence of particle trajectories
& continuum fields through balance laws

» [HARDY JChemPhys 1982], [MURDOCH [JEngSci 1993]
Extension of 1&K to smooth kernels

e [ZIMMERMAN JCompPhys 2010] referential /material
correspondence



Background

In addition to the well-known work of Eshelby(1951), Rice(1968),
Peach & Koehler (1950), there is history work on an atomistic
J-integral:

>

[INOUE [JFrac 1994] path-dependent approximation to the
J-integral

[NAKATANI AIAAJ 1998], [JIN JNSNT 2005], [KHARE PRB
2007] domain integral approach, examine appropriate
reference configuration.

[XU IJFrac 2004] finite-difference approximation of energy
release rate

[CHOI PhilMag 2007] alternative contour integral &
emphasis on cohesive zone development

[JONES JMechPhysSol 2010] path-independent, T =0
atomistic J-integral

[JONES JPhysCondMat 2011] finite T, quasistatic J-integral



Eshelbian mechanics

The energy release rate relative to a process with a fixed reference
configuration

- : ow ,
feeX) . F) - X F) = [ 52 - pav

expl

where ¢,(X) is a map describing the configurational change in the
reference, and

OW|  _OW(X,F)  OW(X,F(X)) dW(X,F(X))

OX | X oX OF

: VxF = Vx§S

is work conjugate to the configurational change.

S is the Eshelby stress and the J-integral is the resultant force

drl
J= SNdA = —

expl



Eshelbian mechanics

Eshelby stress is
S=VI-F'P
where
» W is the (Helmholtz) free energy,
» F = Vxx is the deformation gradient,
» P is the 1st Piola-Kirchhoff stress

notice these are a work-conjugacy triplet.
At zero temperature equilibrium
J= SNdA:/ WN-F'PNdA= | WN-H'PNJA
a0 oQ a0

where W is the internal energy, and H = Vxu is the displacement
gradient.



Hardy coarse-graining

Take Newton's law
maoug,, = f,

with mass m,, displacement u, and force f, = Ok, P, and localize
with kernel ¢ = (x)

/maijade: /fawdv
The left-hand side can be identified with a change in momentum
p(X,t) = /maua(t) Y(Xq — X) dV

and the right-hand side with a divergence of stress

VX.P = /fa QZJ(XOC—X) dVv = Zwafaﬂ = %Z(dja—wﬂ)faﬁ =
af af



Hardy

Instead of a truncated expansion for Ay = 1), — 1, define an
exact relation

Ay = Vxp- AX +...= VxB-AX

via Bag(X) = [o 0 (A(Xa — X) + (1 — A)(X5 — X)) d) to obtain
a stress
P(X,t) = /fag ® Xag Bap(X) AV

which is unique up to a solenoidal field.



Consistent fields
The estimation of three fields are necessary
> (stored) energy density:

= Z ¢a(t) w(x - Xa) - W(X)

where W(X) =Y, ¢X9(X — Xa) and ¢X = ¢ ({Xg}) is the
PE in a fixed reference configuration {X°}.
» displacement gradient defined in mass-weighted fashion

(. 1) — S (xe(t) = Xe) muti(Xe — X)
Za maw(xa - X)

consistent with momentum density p. With interpolation

u=>,u(Xy, t)N,(X) leads directly to

H=Vxu=> u(t)VxN(X).
I

» stress
Y fap(t) @ XapBas(X)

a<fB



Consistency and Accuracy
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Crack tip with far field boundary conditions
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Finite temperature
At finite temperatures we need to revisit

_ _ T — _ T
J_/aQ<\IJ>N (FTP)N dA /m(wm (HTP)N dA

and
P=0Fl;V

The free-energy V is hard to calculate directly, instead we chose a
quasi-harmonic model

n

kg T
VoH = ¢0+V|Og1:11:

hwi
kg T

based on an assumed partition function, i.e. [Jw; = VdetD, and
dynamical matrix
% 0?P

D,z =
af =" /Mg Ougdug’




Consistency

In mechanical Vx - P = 0 and thermal equilbrium Vx T =0, we
get

_ _ T _ — _
JT_/BQ%N (HTP)N — (©)N dA = Jo /m<@>NdA

Thus, we can decompose the free-energy into the stored energy ¢
we used before plus a correction

V=P + 04

where

Va

ks T o\’
Oy = log T v/ detD; y
B



Consistency

Using thermodynamic integration

g~ 1 1
0235 \Ul—WO—/ PdF+/ SAaT
o -024 0 0
< -0.23 T
> oz o and a variety of (homogenous)
025 |23 loading conditions we verified that
-0.2316 .
s o 20 w0 w the local harmonic model was suf-
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K ficiently accurate for our applica-

tion.



Finite temperature crack

Using thermalization of a sequence minimized states with far field
loading

PE per om (eV)

Eshelby stress 22 (eV/AN3)

38 -3. 6\ NERN) 2
— '_

-3.85 -3.7 o

we obtain fields that show localization together with thermal noise




Finite temperature crack
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Future work
The present work

» shows path-independence

» good agreement with theory
» straight-forward implementation
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Present work could be extended to:

» full dynamics

» other potentials

» more accurate QH models
» amorphous solids

dislocation density

Right now we are working on connecting atomistic processes to

continuum plasticity , e.g. plastic strain, dislocation density with a
statistical ensemble of dislocations in MD.



Edge dislocation
stress: Hardy vs. LEFM
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