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ABSTRACT

As smartphones increase in prevalence and functionality,

they have become responsible for a greater and greater amount

of personal information. The information smartphones con-
tain is arguably more personal than the data stored on per-
sonal computers because smartphones stay with individuals
throughout the day and have access to a variety of sensor
data not available on personal computers. Developers of
smartphone applications have access to this growing amount
of personal information, however, they may not handle it
properly, or they may leak it maliciously.

The Android smartphone operating system provides a
permissions-based security model which restricts applica-
tion’s access to user’s private data. Each application stat-
ically declares its requested permissions in a manifest file
which is presented to the user upon application installation.
However, the user does not know if the application is us-
ing the private locally or sending it to some third party.
To combat this problem, we present AndroidLeaks, a static
analysis framework for finding leaks of personal information
in Android applications.

To evaluate the efficacy of AndroidLeaks on real world An-
droid applications, we obtained over 23,000 Android appli-
cations from several Android markets. We found 9,631 po-
tential privacy leaks in 3,258 Android applications of private
data including phone information, GPS location, WiFi data,
and audio recorded with the microphone.
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1. INTRODUCTION

As smartphones have become ubiquitous, the focus of mobile
computing has shifted from laptops to phones and tablets.
Today, there are several competing mobile platforms, and as
of March 3, 2011, Android has the highest market share of
any smartphone operating system in the U.S.[6]. As such,
it is important to ensure that smartphones running the An-
droid operating system maintain an acceptable level of se-
curity for a user’s private information.

Android provides the core smartphone experience, but much
of a user’s productivity is dependent on third-party applica-
tions. To this end, Android has numerous marketplaces at
which users can obtain third-party applications. In contrast
to the market policy for iOS, in which every application is
reviewed before it can be posted[10], most Android markets
are open for developers to post their applications directly,
with no review process. This policy has been criticized for
its potential vulnerability to malicious applications. Google
instead allows the Android Market to self-regulate, with
higher-rated applications more likely to show up in search
results.

Android sandboxes each application from the rest of the
system’s resources in an effort to protect the user[2]. This
attempts to ensure that one application cannot tamper with
another application or the system as a whole. If an applica-
tion needs to access a restricted resource, the developer must
statically request permission to use that resource by declar-
ing it in the application’s manifest file. Then, when a user
attempts to install the application, Android will warn the
user that the application requires certain restricted resources
(for instance, location data), and that by installing the ap-
plication, she is granting permission for the application to
use the specified resources. If the user declines to authorize
the application, the application will not be installed.

However, statically requiring permissions does not inform
the user how the resource will be used once granted. A maps
application, for example, will require access to the Internet
in order to download updated map tiles, route information
and traffic reports. It will also require access to your loca-
tion in order to adjust the displayed map and give real-time
directions. The application will send location data to the
maps server in order to function, which is acceptable given
the purpose of the application. However, if the application
is ad-supported it may also leak location data to advertisers
for targeted ads, which may compromise a user’s privacy.



Given the only information currently presented to users is
a list of required permissions, a user will not be able to tell
how the maps application is handling personal information.

To address this issue, we present AndroidLeaks, a static
analysis framework designed to identify leaks of personal
information and privacy violations in Android applications
on a large scale. Using WALA[5], a program analysis frame-
work for Java source and byte code, we create a call-graph
for the application code and then perform a reachability
analysis to determine if sensitive information may be sent
over the network. In cases where it can, we use dataflow
analysis to track tainted data to see if it is ever leaked.

Other projects, such as TISSA[17], have worked on allowing
users more control over access to private data on a per appli-
cation basis. However, taking advantage of their approach
requires the user to flash a custom version of the Android
Operating System. This currently prevents widespread adop-
tion because there are barriers to doing this, such as voided
warranties and lack of technical knowledge.

AndroidLeaks has several advantages over related privacy
leak detection. By using static analysis techniques, we are
able to cover the entire code base, identifying paths that
may not be uncovered using dynamic analysis, as dynamic
analysis may not be able to trigger all execution paths in
the application. As AndroidLeaks does not require running
applications, we are able to analyze many Android applica-
tions in a short period of time. While several other tools
exist to find privacy violations in Android applications|[7,
8], to the best of our knowledge, none have automatically
analyze applications on a large scale.

Our contributions in this paper are as follows:

e We have created a set of mappings between Android
API methods and the permissions they require to ex-
ecute. We use a subset of this mapping as the sources
of private data and the network sinks we use to detect
privacy leaks.

e Using this mapping we demonstrate the ability of our
analysis to be a developer aid, precisely recovering the
subset of permissions we focused on 88.4% of the time
and precisely recovering the permissions 33.2% of the
time across all standard Android permissions.

e We present AndroidLeaks, a static analysis framework
which finds leaks of private information in Android
applications. We evaluated AndroidLeaks on 23,838
Android applications, which is to our knowledge the
largest known independent collection of mobile appli-
cations. We found potential privacy leaks involving
uniquely identifying phone information, location data,
WiFi data, and audio recorded with the microphone
in 3,258 Android applications.

e We compare several popular ad libraries in terms of the
permissions they use and types of data they leak. We
also analyzed their leaks and then manually verified
them so that we can help developers pick the most
privacy-respecting ad libraries.

2. BACKGROUND

Android applications run in a virtual machine called Dalvik
[4]. A large portion of the Android framework and the appli-
cations themselves, are initially coded in Java, then compiled
into Java bytecode before being converted into the Dalvik
Executable (DEX) format. Fortunately for our analysis, the
final conversion to DEX byte code retains enough informa-
tion that the conversion is reversible in most cases using the
dex2jar tool [13].

Android applications are distributed in compressed packages
called Android Packages (APKs). APKs contain everything
that the application needs to run, including the code, icons,
XML files specifying the U, and application data. Android
applications are available both through the official Android
Market and other third-party markets. These alternative
markets allow users freedom to select the source of their
applications.

The official Android Market is primarily user regulated. The
ratings of applications in the market are determined by the
positive and negative votes of users. Higher ranked applica-
tions are shown first in the market and therefore are more
likely to be discovered. Users can also share their experi-
ences with an application by submitting a review. This can
alert other users to avoid the application if it behaves poorly.
Google is able to remove any application not only from the
market, but also from users’ phones directly, and has done
so recently when users reported malicious applications [12,
16]. However, recent research [7] shows that many popular
applications still leak their users’ private data.

Android applications are composed of several standard com-
ponents which are responsible for different parts of the ap-
plication functionality. These components include: Activ-
ities, which control UI screens; Services, which are back-
ground processes for functionality not directly tied to the UT;
BroadcastReceivers, which passively receive messages from
the Android application framework; and ContentProviders,
which provide CRUD operations® to application-managed
data. In order to communicate and coordinate between com-
ponents, Android provides a message routing system based
on URIs. The sent messages are called Intents. Intents can
tell the Android framework to start a new Service, to switch
to a different Activity, and to pass data to another compo-
nent.

Each Android application contains an important XML file
called a manifest[l]. The manifest file informs the Android
framework of the application components and how to route
Intents between components. It also declares the specific
screen sizes handled, available hardware and most impor-
tantly for this work, the application’s required permissions.

Android uses a permission scheme to restrict the actions of
applications [2]. Each permission corresponds to protecting
a type of sensitive data or specific OS functionality. For
example, the INTERNET permission is required to initiate
any network communications and READ_PHONE_STATE
gives access to phone-specific information. Upon applica-
tion installation, the user is presented with a list of required

ICreate, Read, Update, and Delete operations.
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permissions. The user will be able to install the application
only if she grants the application all the permissions. Cur-
rently, there is no way to install applications with only a sub-
set of the permissions they require. Additionally, Android
does not allow any further restriction of the capabilities of
a given application beyond the permission scheme. For ex-
ample, one cannot limit the INTERNET permission to only
certain URLs. This permission scheme provides a general
idea of an application’s capabilities, however, it does not
show how an application uses the resources to which it has
been allowed access.

3. THREAT MODEL

Our work focuses on the threat of Android applications leak-
ing private data within the scope of the Android security
model[2]. We are not concerned with vulnerabilities or bugs
in Android OS code, the SDK, or the Dalvik VM that runs
applications. For example, a Webkit? bug that causes a
buffer overflow in the browser leading to arbitrary code ex-
ecution is outside the scope of our work. Our trusted com-
puting base is the Android OS, all third party libraries (not
included in the APK), and the Dalvik VM.

Our goal is to determine if applications are using the per-
missions they are granted to leak sensitive data to a third-
party. Examples of this include sending the phone’s unique
ID number or location data to an user-analytics firm or to
the application developer. We do not evaluate whether or
not a leak is required for application functionality.

We do not attempt to track private data specific to an appli-
cation, such as saved preferences or files, since automatically
determining which application data is private is very diffi-
cult. Finally, we do not attempt to find leaks enabled by
the collaboration of applications.

2Webkit is a rendering engine used by browsers such as
Chrome and Safari.
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4. METHODOLOGY

In this section we discuss the architecture and implemen-
tation of AndroidLeaks. First we describe our process of
creating our permission mapping — a mapping between An-
droid API calls and permissions they require to execute. A
subset of this mapping is used as the sources and sinks we in-
clude in our later dataflow analysis. By source, we mean any
method that accesses personal data; for example, a uniquely
identifying phone number, or location data. We consider a
sink to be any method which can transmit sensitive data off
of the phone. In this paper, we focus on network connec-
tions. However, we have identified API methods for SMS
and bluetooth sinks for inclusion in further work.

4.1 Permission Mapping

To determine if an application is leaking sensitive data, first
one must define what should be considered sensitive data.
Intuition and common sense can give a good starting point.
However, in Android we can do much better since access
to restricted resources is protected by permissions. Thus,
if we can determine which API calls require a permission
that protects sensitive data, it is likely that the methods are
sources of private data.

Ideally this mapping between API methods and the permis-
sions they require would be stated directly in the documen-
tation for Android. This mapping would be useful for devel-
opers because it would help them better understand what
permissions their application will require. Unfortunately,
the documentation is incomplete, and frequently will omit
this mapping. To address this issue, we attempt to automat-
ically build this mapping by directly analyzing the Android
framework source code. Figure 1 visualizes our process.

Intuitively, for a permission to protect certain API function-
ality, there must be points in the code where the permission
is enforced. In manual analysis of the source, we found a
number of helper functions that directly enforce a permis-
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Figure 2: AndroidLeaks Analysis Process.
1. Preprocessing. 2. Recursive call stack generation to determine where
permissions are required. 3. Dataflow analysis between sources and sinks.

sion, such as PermissionController.checkPermission(String
permission, int pid, int uid). By parsing the Android source
code for occurrences of known permission identifiers, we were
able to find the methods in which these helper functions were
used.

However, few of these methods are part of the Android API
accessable to the developer. Thus, we needed to propagate
the method call to permission mapping up to the Android
SDK method calls that developers use. For every method
in every class, we recursively determined the methods called
by each method in the framework, building a call stack of
the Android source. If our analysis encountered a method
in our permission to API method mapping, we labeled the
method as requiring that permission as well as each parent
method in the call stack we had been building.

To supplement our programmatic analysis, we manually re-
viewed the Android documentation to add mappings we may
have missed. Currently we have mappings between over 2000
methods and the permissions they require. Though this pro-
cess gave us many mappings, it does not find permission
checks that are implemented in native code and can not
propagate permission requirements along edges connected
by Intents.

The primary focus in this paper is finding privacy leaks.
However, our permission mapping contains method signa-
tures for almost all permissions, not just the ones that ac-
cess or can potentially leak sensitive data. This mapping
could be used to aid developers in understanding more pre-
cisely which permissions different application functionality
requires. Furthermore, our mapping could be used to au-
tomatically generate an application’s required permissions,
saving the developer time and assuring a minimal set of per-
missions. We describe our current effectiveness at automat-
ically generating required permissions in Section 5.2.

4.2 Android Leaks

In this section we describe our AndroidLeaks process. See
Figure 2 for a visual representation. Before we attempt to
find privacy leaks, we perform several preprocessing steps.

First, we convert the Android application code (APK) from
the DEX format to a jar using dez2jar[13]. This conversion
is key to our analysis, as WALA can analyze Java byte code
but not DEX byte code.

Using WALA, we then build a callgraph of the application
code and any included libraries. We iterate through the ap-
plication classes and determine the application methods that
call API methods which require permissions. We also keep
track of which other app methods can call these app methods
that require permissions, as reviewing the callstacks can give
insight into the flow of the application’s use of permissions.
If the application contains a combination of permissions that
could leak private data, such as READ_PHONE STATE
and INTERNET, we then perform dataflow analysis to de-
termine if information from a source of private data ever
reaches a sink.

4.2.1 Taint Problem Setup

The three components of most taint problems are sources,
sinks and sanitizers. In our setup, we rely on the permission
mapping we built between API calls and the permissions
they require to categorize permissions relating to location,
network state, phone state, and audio recording as sources.

Android has two categories of location data: coarse and fine.
Coarse location data uses triangulation from the cellular
network towers and nearby wireless networks to approxi-
mate a device’s location, whereas fine location data uses
the GPS module on the device itself. We do not differ-
entiate between coarse and fine location data for two rea-
sons. First, the ACCESS_FINE_LOCATION permission su-
percedes the ACCESS_COARSE_LOCATION permission.
Specifically, when we created our permission mapping, we
discovered that methods that require
ACCESS_COARSE_LOCATION will accept
ACCESS_FINE_LOCATION instead. Second, because in
practical use, using wireless networks can allow a coarse lo-
cation fix to get as precise as 50 meters or less. We believe
this to be almost as sensitive as fine location data.

We labeled all methods that require access to the Internet



as sinks. However, our initial mapping contained very few
mappings. We discovered that the Internet permission is
enforced by the sandbox, which will cause any open socket
command to fail if the Internet permission has not been
granted. Since this permission is handled by native code, we
were unable to automatically find many Internet permission
mappings. A complete Internet is very important, since it is
the primary way to leak private data, so we manually went
through the documentation for the android.net, java.net and
org.apache packages and added undiscovered methods to our

mapping.

We do not include any sanitizers in our analysis for sev-
eral reasons. Most importantly, we wanted to find paths
where sensitive data is leaked to third parties regardless of
if it has been processed in some way. Furthermore, we do
not believe most applications will attempt to sanitize sen-
sitive information they are sending to third parties. Lastly,
recognizing application-specific data sanitization methods is
difficult and not worth pursuing at this stage of our work.

4.2.2 Taint Analysis

First, we use WALA to construct a context-sensitive Sys-
tem Dependence Graph (SDG) and then add a context-
insensitive heap dependency overlay. Using the resulting
SDG, we compute forward slices for the return value of each
source method we identify in the application. We then ana-
lyze the slice to determine if any parameters to sink methods
are tainted, meaning that they are data dependent on the
source method. If such a dependency exists, then private
data is most likely being leaked and we record it.

Unfortunately, WALA’s built-in SDG and forward slicing
algorithms alone are not sufficient to do taint tracking in
Android applications. In order to accomplish this, we used
the following approaches:

Handling Callbacks Most sources are API methods, how-
ever, callbacks are used extensively in Android and there are
some that will be called with private data as a parameter.
For example, location information can be accessed either di-
rectly by asking the LocationManager for the last known
location or by registering with the LocationManager as a
listener. If the latter, the LocationManager provides regular
updates of the current location to the registered listener. For
API methods labeled as sources, we were able to taint the
return values of these methods, however, for callbacks this
approach does not work since neither the return value of the
callback nor the return value of the registration is tainted.
Instead, we identified calls to the register listener method
and then inspected the parameters to determine the type of
the listener. We then tainted the parameters of the callback
method for the listener’s class. This approach allows us to
compute forward slices for both types of access in the same
way.

Taint-Aware Slicing Rather than modify WALA inter-
nally as done in [15], we decided to analyze the computed
slices and compute new statements from which to slice. We
implemented the following logic to compute these new state-
ments:

1. Taint all objects whose constructor parameters are tainted

data.

2. Taint entire collections if any tainted object is added
to them.

3. Taint whole objects which have tainted data stored
inside them.

By applying these propagation rules to the slice computed
for the source method, we create a set of statements that are
tainted but are not be included in the original slice. We then
compute forward slices for each of these statements and all
others derived in the same manner from subsequent slices
until we encounter a sink method or run out of statements
from which to slice.

In particular, our third taint propagation rule was a large
source of false positives, especially when applied to Activ-
ities. As mentioned before, Activities are responsible for a
single UI screen. This screen is comprised of several views
which are UI foundations, such as text views and buttons.
Some advertising libraries can be bound directly to a view
by the Activity for ease of use. Therefore, if the Activity
object ever becomes tainted, we will report a leak because
some data from the Activity flows to the advertisers and
therefore to a sink.

5. EVALUATION

We evaluated AndroidLeaks on a body of 23,838 unique An-
droid applications, including nine applications that included
the Geinimi library, which is known to be malware. The
official Android Market[9] has many free applications but
Google has created mechanisms to discourage automated
crawling. Fortunately, the application distribution model
of Android applications works in our favor — there are
many third-party Android market sites. We wrote crawling
scripts for both American and Chinese market sites, includ-
ing SlideMe[14] and GoApk[3]. We found that many appli-
cations are present in multiple markets. We identified iden-
tical applications across markets by comparing their SHA1
hashes.

Out of these 23,838 apps we were unable to analyze 4,142
due to invalid bytecodes in the dex2jar converted APKs.
There were also 1,607 apps which required no permissions.
These apps do not have the ability to gain access to sensi-
tive data nor leak information so we exclude them from the
analysis described in this section. Of the remaining 18,089
apps, we found potential privacy leaks in 3,258 of them, ap-
proximately 18%.

We chose to focus on 4 types of privacy leaks: uniquely
identifying phone information, location data, wifi state and
recorded audio. This data can be used to uniquely identify a
phone and possibly link it to a physical identity. Combined
with location and microphone data, a malicious application
could record information about the user: who they are, what
they do, and where they go.

5.1 Potential Privacy Leaks Found
We found a total of 9,631 leaks in 3,258 Android applica-
tions. 2,387 of these are unique leaks, varying by source,
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sink or code location. 6,156 were leaks found in ad code,
which comprises 64% of the total leaks found. In Figure
3 we show the source of leaks of phone and location data,
divided into application and ad libraries. Figure 4 shows a
breakdown of the leaks we found by leak type. We do not
include pie charts for Wifi and record audio leaks because
all were found in application code.

5.1.1 Verification

Due to the large number of APKs analyzed and leaks found,
it is fundamentally difficult to verify the correctness of all
our results due to time constraints. Since APKs are com-
prised of both ad code and application code, and both may
leak, we chose to initially focus on verifying leaks found in
ad code to gain a maximum amount of insight into the accu-
racy of our results. Ad code is almost always a third-party
library that is included with application code by the devel-
oper, and a given ad library should be the same between
applications. Therefore, by confirming an ad leak as a true
or false positive we can reuse that result for all occurrences
of that same leak. Thus we initially focused on verifying the
most common unique leaks to determine the veracity of the
largest number of leaks. We identify leaks by the 3-tuple:
source method, method the source method is called from,
and the sink method.

We manually traced 48 leaks in various versions of the Mob-
clix, adHUBS, Millennial Media, and Mobclick libraries to
assess the accuracy of AndroidLeaks’s results. Of these, we
were able to verify 24 to be valid leaks in ad code. The
false positives tended to occur most commonly in applica-
tions that contained many ad libraries in addition to the one
in which we were analyzing. We suspect that the false pos-
itives are due to our taint propagating too far and reaching
sinks in these other libraries.

The 24 leaks described above are collectively repeated 3057
times and occur in 1606 unique applications. Therefore al-
most a third of the total discovered leaks are true positives
and about half of the total reported leaky APKs have con-
firmed leaks.

We also verified a small random set of applications contain-
ing each leak type in application code to confirm Androi-
dLeaks is successful at finding leaks in application code as
well. Interestingly, several of the microphone leaks we veri-
fied turned out to be in IP camera applications, such as "Su-
perCam” or "IP Cam Viewer Lite.” We believe that the leak
paths we reviewed were for legitimate application function-
ality, but it’s difficult to determine intention with certainty.

Our manual verification confirmed if leaks we found were
real but we did not attempt to determine something equally
interesting: if the leaks were a part of described application
functionality or if they were potentially malicious. Differen-
tiating the two was not a focus of our tool and it is difficult
to determine this even manually without becoming familiar
with the structure of the application and the purpose of its
components. Clearly the latter is impractical to do on a
representative body of applications.

5.1.2 Ad Libraries

During our manual review of ad libraries, we found numer-
ous instances of leaks that our analysis did not find. Nearly
every ad library we looked at leaked phone data and, if possi-
ble, location information as well. We hypothesize that nearly
any access of sensitive data inside ad code will end up be-
ing leaked, as ad libraries provide no separate application
functionality which requires accessing such information.

As an application developer, knowledge of the types of pri-
vate information an ad library may leak is valuable informa-
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tion. One may use this knowledge to select the ad library
that best respects the privacy of users and possibly warn
users of potential uses of private information by the adver-
tising library. Clearly, it’s important to determine the types
of sensitive data accessed by ad libraries and how it is used.

One solution is to watch an application which uses a given
ad library using dynamic analysis, such as TaintDroid. How-
ever, one runs into fundamental limitations of dynamic anal-
ysis, such as difficulty in achieving high code coverage. Even
with maximum possible code coverage using dynamic taint
analysis, there is a further problem specific to Android.
Many ad libraries we examined check if the application they
were bundled with has a given permission, oftentimes loca-
tion. Using this information, they could localize ads, po-
tentially increasing ad revenue by increasing click throughs.
However, there is nothing preventing ad libraries for check-
ing if they have access to any number of types of sensitive
information and attempting to leaking them only if they are
able. A dynamic analysis approach could watch many ap-
plications with a malicious advertising library and never see
this functionality if none of the applications declared the
relevant permissions. Using our static analysis approach we
do not have this limitation and would be able to find these
leaks regardless of the permissions required by the applica-
tion being analyzed.

Ad libraries tend to be distributed to developers in a precom-
piled format, so it is not easy for an application developer to
determine if an ad library is malicious through manual re-
view. Additionally, a developer wanting to use an ad library
is forced to use the ad library as it comes, with no option
to remove features or modify the code. There is no current
mechanism in Android allowing one to restrict the capability
of a specific portion of code within an application — all ad
libraries have privilege equal to the application with which

they are packaged. We note that a need for sand-boxing
a subset of an application’s code is not an issue specific to
Android; it is an open issue for many languages and plat-
forms. However, the issue is especially relevant on mobile
platforms because applications commonly include unverified
third-party code to add additional features, such as ads.

5.2 Discovering Required Permissions

The Permission Mining step of our analysis could be used
by Android developers as a tool to help automatically gen-
erate the permissions their application needs. Though our
mapping is still far from precise or complete, the initial re-
sults are promising. For the following stats, we excluded any
developer-defined permissions or permissions internal to An-
droid or Google and not specified on the Android manifest
page. On the permissions we focused on for detecting pri-
vacy leaks, including INTERNET, READ_PHONE_STATE,
and ACCESS_[COARSE|FINE]_LOCATION, we recovered
the exact permissions for 14562 out of 16,471, or 88.4%.
Over all of the 115 permissions currently defined in the An-
droid documentation, our analysis is able to recover 5468
out of 16,471, or 33.2%. Out of the applications declaring no
permissions, our analysis found 82 applications with method
calls which require permissions. This is including some per-
missions we currently have no mappings for and most which
we made little effort to improve the mapping for beyond the
initial permission mapping creation. One could potentially
recover developer defined permissions by examining the per-
mission checks in application code and the filters declared
in the application manifest. We leave this problem open for
future work.

Likely Developer Permission Errors Android gives de-
velopers the flexibility to define permissions specific to their
application to allow the applications to share functionality
with other applications in a mediated fashion. However,



Leak Type Unique Leaks | % of all Leaks | # apps with leak | % apps with leak
Phone 8558 88.9% 2939 16.2%
Location 959 9.96% 434 2.40%
WiFi 59 0.61% 36 0.20%
Record Audio 55 0.57% 32 0.18%

Table 1: Breakdown of Leaks by Type

Type of Leak
Ad Library Phone | Location | Wifi | Microphone | # apps using | % apps using
Mobclix v O X X 597 3.3%
Mobclick v (0) X X 436 2.4%
adHUBS v O X X 442 2.4%
Millennial Media v (0] X X 162 0.9%

Table 2: Ad Library Leaks by Type. v: found by our analysis, 0: missed by analysis but

found manually, X: not found by either

as developers must manually specify the permissions their
application needs and they are not restricted to the default
permissions declared by Android, there is room for developer
error. While it’s impossible to definitively say that a permis-
sion was incorrectly specified without manually reviewing
the code, we found a number of permissions that appear to
be typographical errors, including "WRITE_EXTERNAL_
STOREAGE,” "ACCESS_COURSE_LOCATION” and
7andoird. permission.ACCESS_COARSE_LOCATION”. Out
of 23,838 there were 551 unique permissions declared. Based
solely on the permission names and without manual verifi-
cation, we estimate at least 125 of these to be developer
errors. These findings support the value of our ability to
automatically recover an application’s required permissions.

Two interesting questions arise in response to the permission
generation problem: first, are there cases in which develop-
ers declare more permissions than they need? Secondly, do
developers ever declare fewer permissions than they need?
Currently, our incomplete mapping causes us to occasion-
ally miss the requirement of certain permissions, incorrectly
leading us to believe an application declares more permis-
sions than it needs. On the other hand, if our mappings are
incorrect and we say a method requires a permission when
it does not, we may falsely believe an application declares
fewer permissions than it needs. These two issues make it
difficult to calculate exactly how effective we are at recov-
ering permissions, though these issues do not significantly
affect our statistics described above. While we do not know
the exact extent of the occurrence of the above two prob-
lems, we do have some concrete examples in which devel-
opers have not declared permissions their application needs.
We may overestimate this value because we consider all code
to be potentially callable in order to not miss cases where
our lack of Android specific control flow would make us miss
leaks. While these are only a very small percentage of the
total applications, they lend credence to the possibility that
there may be more instances of both problems and that this
functionality would be of use to developers.

5.3 Miscellaneous Findings

Having a large number of Android applications allows us
analyze them for other trends such as prevalence and types
of ad code or other libraries, frequency of permissions being
requested and a number of other statistics. We describe a
number of interesting findings in the following sections.

5.3.1 Unique Android Static Analysis Issues

During the course of our analysis, we found several issues
unique to Android that impacted our false positive and false
negative rate. A common programming construct in ad li-
braries is to check if the currently running application has
a certain permission before executing functionality that re-
quires this permission. Many ad libraries do this to serve
localized ads to users if the application has access to loca-
tion data. An analysis which does not take this into account
would find all such libraries as requiring access to location
data and would possibly find leaks involving location data
when in reality neither are valid because the application does
not have access to location data.

5.3.2 Native Code

Native code is outside the scope of our analysis, however, it
is interesting to see how many applications actually use na-
tive code. The use of native code is discouraged by Android
as it increases complexity and may not always result in per-
formance improvements. Additionally, all Android APIs are
accessible to developers at the Java layer and so the native
layer provides no extra functionality. Nevertheless, we found
that out of 23,838 applications, 1,457 (6%) of applications
have at least one native code file included in their APK. Of
the total 2,652 shared objects in APKs, a majority (1,533,
58%) of them were not stripped. This is interesting because
stripping has long been used to reduce the size of shared li-
braries and to make them more difficult to reverse engineer,
however, a majority of the applications we downloaded con-
tained unstripped shared objects. This may be a result of
developers using C/C++ who aren’t familiar with creating
libraries.

6. LIMITATIONS

There are currently several limitations of our design and
implementation, both will be discussed below and possible



improvements will be discussed in Section 7

6.1 Implementation Limitations

Incomplete permission mapping Our mappings between
API methods and permissions is not complete. This will lead
to our analysis underreporting the permissions required by
some applications since we will not recognize certain API
calls as requiring permissions. This also leads to us having
an incomplete set of sources for our privacy leak analysis
which may cause us to miss privacy leaks. This issue may
or may not be easily solved, and will be discussed in Section
7.

Android-specific control and data flows We do not an-
alyze Android-specific control and data flows. This includes
Intents, which are used for communication between Android
and application components, and Content Providers, which
provide access to database like structures managed by other
components. These Android-specific flows have been investi-
gated in SCanDroid [8] and their approaches could be added
to our analysis in order to detect more complex leaks, pos-
sibly involving multiple applications colluding.

6.2 Design Limitations

Analysis dependencies As mentioned in Section 5, we are
unable to run our analysis on a portion of applications as a
result of invalid bytecodes in the dex2jar converted APKs.
We rely on both dex2jar and WALA working for us to even
begin analyzing an application. We were unable to analyze
approximately 17 % of our applications due to problems with
dependencies.

Native code Finally, another limitation of our design is
that we do not consider privacy leaks in native code. As dis-
cussed in Section 5.3.2, a portion of applications use native
code. Because our analysis is restricted to Java bytecode,
our taint analysis will not be able to track data flows into na-
tive code. In the worst case, an application could be almost
entirely written in native code, and only use Java to access
the Android APIs not available in native libraries. Our cur-
rent analysis would be able to report very little about such
an application.

7. FUTURE WORK

Android-specific control and data flow As described
in Section 6, there are several unique ways execution may
flow in Android that we plan to handle in the future. Using
Intents, one method can call another, either directly by name
or indirectly by type of desired task. Both cases are more
complicated to analyze than standard control flow. In the
former case, we would need to introspect on the values of
the arguments in Intent passing and in the latter case we
would need to build up a model of both the application’s
configured environment and potentially the other installed
applications on the phone to know what would be called.

Permission mapping Though we have made every effort
to be accurate and precise in our mappings of API methods
to required permissions, we are missing a number of meth-
ods that require permissions and we have likely included
at least several that do not require permissions. These are
sources of false negatives and false positives, respectively.

There are certain fundamental aspects of static analysis that
can cause implementations to either lose soundness or com-
pleteness. While we cannot avoid fundamental limitations
of static analysis, we assuredly have control over the accu-
racy and precision of our mapping. We plan to improve our
mapping so that we can minimize these unnecessary impre-
cisions.

8. RELATED WORK

Chaudhuri et. al. present a methodology for static analysis
of Android applications to help identify privacy violations in
Android with SCanDroid[8]. They used WALA to analyze
the source code of applications, rather than the Java byte
code as we do. While their paper described mechanisms to
handle Android specific control flow paths such as Intents
which our work does not yet handle, their analysis was not
tested on real Android applications.

Egele et. al. also perform similar analyses with their tool
PiOS[11], a static analysis tool for detecting privacy leaks in
iOS applications. They ran into a similar inter-procedural
problems, where methods were being routed through a dy-
namic dispatch function in the Objective-C runtime and
they had to develop a method to statically follow private
data as it propagated through different components of an
application. PiOS ignored leaks in ad libraries, claiming
that they always leak, while one of the focuses of our work
is giving developers insights into the behavior of ad libraries.
To our knowledge, PiOS presented the largest public analy-
sis of smartphone applications before this paper, analyzing
1,400 PiOS applications whereas we analyzed over 23000. .

In comparison to AndroidLeaks’s static analysis approach,
TaintDroid [7] detects privacy leaks using dynamic taint
tracking. Enck et. al. built a modified Android operat-
ing system to add taint tracking information to data from
privacy-sensitive sources. They track private data as it prop-
agates through applications during execution. If private
data is leaked from the phone, the taint tracker records the
event in a log which can be audited by the user. Taint-
Droid is limited in the number of applications that can be
tested because they must all be tested through execution.
This approach requires that a user manually click through
the application windows, trying to trigger data leaks. Our
framework, which uses static analysis, can analyze many
more applications.

Zho et. al. presented a patch to the Android operating sys-
tem that would allow users to selectively grant permissions
to applications [17]. Their patch gives users the ability to
revoke access to, falsify, or anonymize private data. While
an interesting approach, it is unlikely that this patch will
be incorporated into stock Android because it may damage
Android’s economic model. However, for users capable of
flashing their own ROMs, this is potentially a very robust
way to limit applications.

9. CONCLUSION

As Android gains even greater market share, its users need
a way to determine if personal information is leaked by
third-party applications. Whereas iOS incorporates a review
and approval process, Android relies on user regulation and
a permissions model that limits applications’ access to re-



stricted resources. Our primary goal was to analyze privacy
violations in Android applications. Along the way, we iden-
tified a mapping between API methods and the permissions
they require, created a tool to discover the permissions an
application requires, accumulated a database of over 23,000
Android applications and detected over 9000 potential pri-
vacy leaks in over 3,200 applications.
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