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IM Hazards PA Materials Characterization Subgroup Planning for PA Extension
US/UK Project Agreement Review Meeting

Thomas A Mason Eric M Mas
Weapon Systems Engineering Associate Director’s Office, Weapons Directorate
Los Alamos National Laboratory  Los Alamos National Laboratory

This presentation outlines proposed plans that the US side of the Materials
Subgroup of the US/UK IM Hazards Project Agreement (PA) wants to pursue for the
time remaining in the original agreement and during a subsequent possible
extension. Deficiencies in our current understanding of the important physics
questions are highlighted and proposed experimental and theoretical solutions are
presented for discussion.
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PZAImNSimple, two-dimensional test geometry

Fragment impact — FSP, Bullet, Sphere ABVR

Penetration of the cover plate

Role of the bond layer

Fragment state after penetration event —Q
hard/soft — extent of fragmentation

Penetration of the energetic layer
elastic expansion and rebound |
Formation of a cloud of energetic rubble
timing, stress state, .....

State of the damaged energetic rubble
density, size distribution, ....
Energy transfer at impact

__lgnition source identification
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Zala N Materials Sub-group: HPP

e Mechanical Model

— Use existing data to inform existing models in the RFG codes

* Fracture and Fragmentation Data to support calibration of RFG models

— X-ray experiments using inert ABVR hardware — FIRE Project TCG-I

— Further Taylor tests on HPP
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PZdIm  Results from LANL Inert ABVR Experiments

Series of x-ray images reveals the evolution of fragment position and
physical condition as a function of impact velocity

K12-18841 969 m/s (3177 ft/s) 440C sphere HPP mock

130 us 180 us @

K12-18843 1344 m/s (4408 ft/s) 440C sphere HPP mock

‘ (RCIONTES
2 - UNCLASSIFIED




Yz
PZdIm  Results from LANL Inert ABVR Experiments ——

K12-18841

969 m/s (3177 ft/s)
440C sphere

4130 cover plate
HPP mock
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PZdImN  Results from LANL Inert ABVR Experiments

K12-18841

969 m/s (3177 ft/s)
440C sphere

4130 cover plate
HPP mock
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PZdInN  Results from LANL Inert ABVR Experiments

K12-18843

1344 m/s (4408 ft/s)
440C sphere

4130 cover plate
HPP mock

‘less correlated’
fragment
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Z Visual and Quantitative Comparison of
AN powder and Fragments

PBX N9 PBX 9501
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Taylor impact tests & simulations of energetics are being done to
study high rate damage formation in unconfined geometries
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Global-Local Plate/Shell Theories applied to
Composite Case

« Predicts the system response based on a direct analysis of underlying
(smaller scale) structure and the constitutive behavior of the individual
materials/phases in the system

* Important Characteristics
— Provides average AND detailed local responses
* Directly accounts of smaller length scale structural influences

* Naturally captures the influences of the extremes in the local
responses

« Can incorporate statistical effects naturally

— Fewer a priori assumptions about relevant physics — many aspects of
physics naturally and directly incorporated due to consideration of
underlying structural features

* More forgiving if physics changes — No reformulation
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Global-Local Plate/Shell Theories applied to
Composite Case

 Delaminated cross-ply plate composed of elastic Gr/Ep
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P4 p N  Materials Sub-group: Other Future Work

* Fragment impacts on covered energetics with and without buffers
* Small scale impact experiments on mock HE to validate HE models
* Data on rubber-tearing failure relevant to HPP

* Shock-shear investigations on PBX 9501

* Henson kinetics into ViscoSCRAM

A L ag2) UNCLASSIFIED

=
&
>
:




AN PZe

Data on rubber-tearing failure relevant to HPP
C. Liu (MST-8, LANL) & D.G. Thompson (WX-7, LANL)

7 N

. . _ Tearing process during
One remaining issue. uniaxial tension of HPP

o Quantitative description and modeling of the mechanical
failure process in HPP,

Some preliminary observations:

o Tensile tearing is the failure mechanism observed in
HPP, as illustrated by the sequence of images on the
right.

o It is observed in all test temperatures, from cold to
warm.

o It has also been observed in simple shear.

o Compared to the failure process in other energetics
(brittle or quasi-brittle), the tearing process in HPP is
relatively slow.

o Our current testing capability can capture the detailed =
field evolution in front of the notch. ‘

Tearing
initiation &
extension

Suggested further investigations:

UNCLASSIFIED o Quantitative experimental measurement of tearing initiation & propagation subject to

different loading mode mixities .

o Quantitative modeling of the failure process in HPP (e.g. using the theory of Hyperelasticity
ﬁ‘v‘r'g"a&% with Softening by Volokh).




Thin Rubber Sheet with a Circular Hole Subject
to Tension
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» Tearing failure eventually starts from the hole boundary and extends perpendicular to the loading direction.
» Modeling challenges: Large deformation (several hundred percent strain) and the process of tearing failure.
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Notched Crack Growth in HPP
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Material Sub-group Possible Future Work —
requires JMP leadership support

1IN

* ‘Engineered’ Taylor/Shotgun impacts

 Study on the role of back tamping / ‘cut backs’
» X-rays of ‘soft’ steel sphere impacts
* Liner and Insulating layer polymer models

e Henson model in CHARM ) ‘)

* Small scale testing:

— ball impact experiments

— Shock/shear . o
| | ] |
* Particle Methods S P | |
* (See slides lining up JMP and UK work) P | ‘
' |
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