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,1M Hazards PA Materials Characterization Subgroup Planning for PA Extension 

US/UK Project Agreement Review Meeting 

Thomas A Mason 
Weapon Systems Engineering 
Los Alamos National Laboratory 

Eric M Mas 
Associate Director's Office, Weapons Directorate 
Los Alamos National Laboratory 

This presentation outlines proposed plans that the US side of the Materials 
Subgroup ofthe US/UK 1M Hazards Project Agreement (PA) wants to pursue for the 
time remaining in the original agreement and during a subsequent possible 
extension. Deficiencies in our current understanding of the important physics 
questions are highlighted and proposed experimental and theoretical solutions are 
presented for discussion. 
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AASimple, two-dimensional test geometry 

Fragment impact - FSP, Bullet, Sphere ABVR 

Penetration of the cover plate 

Role of the bond layer 
v. 

Fragment state after penetration event .. e 
hard/soft - extent of fragmentation 

Penetration of the energetic layer 

elastic expansion and rebound 

Formation of a cloud of energetic rubble 

timing, stress state, ..... 

State of the damaged energetic rubble 

density, size distribution, .... 

Energy transfer at impact 

Ignition source identification 
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Materials Sub-group: HPP 

• Mechanical Model 

- Use existing data to inform existing models in the RFG codes 

• Fracture and Fragmentation Data to support calibration of RFG models 

- X-ray experiments using inert ABVR hardware - FIRE Project TCG-I 

- Further Taylor tests on HPP 
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Results from lANllnert ABVR Experiments 

Series of x-ray images reveals the evolution of fragment position and 
physical condition as a function of impact velocity 

K12-18841 969 m/s (3177 ftls) 440C sphere HPP mock 

K12-18843 1344 m/s (4408 ftls) 440C sphere HPP mock 
~~~----
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Results from lANllnert ABVR Experiments 

K12-18841 
969 m/s (3177 ftls) 
440C sphere 
4130 cover plate 
HPP -mock 
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Results from LANL Inert ABVR Experiments 

K12-18841 
969 m/s (3177 ftls) 
440C sphere 
4130 cover plate 
HPP mock 
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Results from LANL Inert ABVR Experiments 

K12-18843 
1344 m/s (4408 ftls) 
440C sphere 
4130 cover plate 
HPP mock 

'less correlated' 
fragment 

UNCLASSIFIED 

IA • . W III!:" Q;f~ 
.V""~/tj 



~ IIJ!!!!'1".ii Visual and Quantitative Comparison of 
~ ~ Powder and Fragments 
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WSI W TaylOr impact tests & simulations of energetics, are being do~e to 
A I'i§§@ study high rate damage formation in unconfined geometries 

PBX 9501 (L) and PBXN-9 (R) 
Impact velocity ~132 m/s 
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Velocity determined from 
Image analysis and rising 
edge of lasers 2 & 3 

Taylor Impact 
Experiments & Simulations 
(cylinder profile for PBXN-9). 
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Global-Local Plate/Shell Theories applied to 
Composite Case 

• Predicts the system response based on a direct analysis of underlying 
(smaller scale) structure and the constitutive behavior of the individual 
materials/phases in the system 

• Important Characteristics 

- Provides average AND detailed local responses 

• Directly accounts of smaller length scale structural influences 

• Naturally captures the influences of the extremes in the local 
responses 

• Can incorporate statistical effects naturally 

- Fewer a priori assumptions about relevant physics - many aspects of 
physics naturally and directly incorporated due to consideration of 
underlying structural features 

• More forgiving if physics changes - No reformulation 

IA •.• r-Ib1~ 
V&." 1i::JIP"J 

UNCLASSIFIED 



Global-Local Plate/Shell Theories applied to 
Composite Case 

• Delaminated cross-ply plate composed of elastic GrIEp 
composite 
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Materials Sub-group: Other Future Work 

• Fragment impacts on covered energetics with and without buffers 

• Small scale impact experiments on mock HE to validate HE models 

• Data on rubber-tearing failure relevant to HPP 

• Shock-shear investigations on PBX 9501 

• Henson kinetics into ViscoSCRAM 
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Data on rubber-tearing failure relevant to HPP 
c. Liu (MST-8, LANL) & D.G. Thompson (WX-7, LANL) 

One remaining issue: 

o Quantitative description and modeling of the mechanical 
failure process in HPP 

Some preliminary observations: 

o Tensile tearing is the failure mechanism observed in 
HPP, as illustrated by the sequence of images on the 
right. 

o It is observed in all test temperatures, from cold to 
warm. 

o It has also been observed in simple shear. 

o Compared to the failure process in other energetics 
(brittle or quasi-brittle), the tearing process in HPP is 
relatively slow. 

Tearing process during 
uniaxial tension of HPP 
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o Our current testing capability can capture the detailed 
field evolution in front of the notch. 
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Suggested further investigations: 

o Quantitative experimental measurement of tearing initiation & propagation subject to 
different loading mode mixities . 
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o Quantitative modeling of the failure process in HPP (e.g. using the theory of Hyperelasticity 
with Softening by Volokh) . 



~ ~ Thin Rubber Sheet with a Circular Hole Subject 
III!'A Iih§Q to Tension 
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• Tearing failure eventually starts from the hole boundary and extends perpendicular to the loading direction. 
• Modeling challenges: Large deformation (several hundred percent strain) and the process of tearing failure. 
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Material Sub-group Possible Future Work -
requires JMP leadership support 

• 'Engineered' Taylor/Shotgun impacts 

• Study on the role of back tamping / 'cut backs' 

• X-rays of 'soft' steel sphere impacts 

• Liner and Insulating layer polymer models 

• Henson model in CHARM 

• Small scale testing: 

- ball impact experiments 

- Shock/shear 

• Particle Methods 

• (See slides lining up JMP and UK work) 
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