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Simulations of Richtmyer-Meshkov Instabilities in Planar 

and Gas-Curtain Shocktube Experiments 

F.F. Grinstein, A.A. Gowardhan, and J.R. Ristorcelli 

Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

Abstract 

Our particular focus in this presentation is devoted to initial material interface 

characterization impact on shock-driven turbulent material mixing. Progress in 

addressing relevant issues of initial condition effects in studies of mixing driven by 

Richtmyer-Meshkov instabilities in planar and gas-curtain shock-tube laboratory 

experiments is reported. 



Simulations of Richtmyer-Meshkov Instabilities in 
Planar and Gas-Curtain Shocktube Experiments 

innovation for o .. r nalio 

Fernando F. Grinstein (simulations), Akshay A. Gowardhan (post-doc), 
J. Ray Ristorcelli (theory) 
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Simulations of Initial Condition Effects 
on Shock-Driven Turbulent Mixing 

Background, Motivations 

• Understand effects of initial material interface conditions 

• Assess predictability of simulation models 

The (single-interface) planar RM experiment 

• Challenges to Moment Closures: the bipolar RM behavior 

-7 Reshock effects (on mix & transition) on first-shock 

The (two-interface) Gas Curtain RM experiment 

• Initial 3D GC characterization and modeling issues 

• Sensitivity of shocked / reshocked GC to ICs 

• Data reduction and bipolar RM behavior 

-7 Opportunities for defining a RM test case 

Conclusions 
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X-Computational Physics Division 

Shock-Driven Turbulence Simulations 
shocks and turbulence must be emulated 

~ shocks and turbulence, unsteady 

~ wide range of length and time scales, 
non -linear interactions 

Yt(: · Un-shocked SF6 I ~ Implicit Large Eddy Simulation (ILES), 
e.g., ILES book, 2nd printing: 2010 

~ Shocked Ail' (lVI=1.5) 

• Richtmyer '60; planar shocktube expts. (V&S '95, Poggi '97, Leinov '09, ... ); 
LANL P-23 gas curtain expts., .... 

• hybrid WENO I classical LES, ... , Pullin et al. - JFM 2006, ... , 2011 

• ILES, 2002 - 2011: Cohen et al. (FV-PPM), ... , Schilling et al. (FD-WENO), 
Leinov et al. (FV-ALE), Thornber-Drikakis-Youngs-Williams et al. (FV-Godunov), ... 

• ILES-RAGE; FV-Godunov, van Leer limiter, no interface treatment, AMR 

1 
planar v-s expts., P Scripta 2010, IWPCTM12; PoF March 2011 ; 
planar Bipolar RM, PoF Letters July 2011 ; AIAA-Hawaii-2011 / ETC13 -7 PoF 
shocked (double interface) gas-curtains, J. Turbulence 2011 , in press. 
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X-Computational Physics Division 

Shock-Driven Turbulent Mixing Experiments I «i!oFfD 
Effects of shocks and turbulence must be addressed ,"oo •• tion lo,~,~,,;J 

ILES RAGE simulations (SF6 mass fraction distributions) 

planar single-interface (V&S, Caltech) gas-curtain two-interface (P-23 ) 

• Understand Effects of Initial Material Interface Conditions 
• Practical Goal: control (promote or inhibit) RM instability 



How does interfacial morphology control 
the evolution of RM ? 

L2D'RD 
innovatIon for our nation 

if Xs(y,z) describes the material interface, 

then, we define the rms slope of the interface "'YJo " 

110 = Kobo 

'" (VXs VXs ) 112 " 6 
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X-Computational Physics Divi sion 

t.:O'R'O,IILES RAGE - Planar RM Expts. 
innovation for our nat loR 
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Spectral Ie effects on material mixing 
Grinstein, Gowardhan, and Wachtor, PoF, March 2011 

- Vetter & Sturtevant, 1995 ., "short" Ie 
•• -.- •• -.- •• + 
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8 

• results for IIthin" initial material interface 
• early-time (t<""'Sm5) growth fairly IC insensitive 
• late-time sensitive to ICs {more 50 for "longer" Ie 
• IC resolution issues ... separate discussion req'd ... 



Initial (single) material interface parameterization 
___ fo_cu~ _fi r_~o~ :_._n_q .. ~:egg-crate", no res hock ... 

- class (Ko~o > 1'&) 
110= 1011112 , 101118, 101114, 101112 

.. A.o=21l1~ 

6 
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.......................................................... ~ ............ q .......... / 
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(Ko~o « 1'&) 
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Bipolar Behavior of planar RM 
Ma=1.S, airlSF6 - no egg-crate, no reshock 

Gowardhan, Ristorcelli and Grinstein; PoF Letters, July 2011 

<fi!b1iD 
innovation for our n.ll0 

Impact of rms slope 'YJo = 1(i50 of Initial Material Interface 
Bevond Richtmver ( arowth = constant x A o = 2:rr / K o 

? bipolar RM behavior vs. Ie morphology 
? different instability mechanisms & late-time flow 

I Dimensional results I Do 

Non-Dimensional"Bipolar" results 

t = 0 16 ~ 18 
)0 
b 
b 

," .-' 

~o 

10 "SFs mass fraction 
t= 3 ms 
after shocked 

consistent -t>- ,,:~"}4 .... '1 ~'12 1 
20~ .4- '1 ., RiB 

with Richtmyer l., ":~ ,}12 

15 

10f 

~,~,.-4--~ _~_S\it:::W:::C _1!'.Air o~ (j ' , -",-:-<.::.' 
. ~/ .... -r'CT 

O~,~ o 500 ~ 1000 1 Tjm~(5) 2000 2500 3000 

Mixing width increases 
with increasing 1]0 

~o 

'0 

o 0 t= 3 ms 
after shocked 

NOT consistent -&":~ 10,/4 ""'1 ~10'I2] 1 
with Rlchtmyer I ~~. """ 20~ .. """"''1 = lo;t/a 

15 

10 

Mixing width decreases 
with increasing 1]0 

14 ~ b 
<b 
Q 

12 ~ ci> 

cb 
10 q§ 

:0 
......... 0 qo 
c.o :0 
~ 8 0 o , 

;.<! p 
co 

6 ~r 

50 

linear, ballistic 
(RicfJtmyer) 

......... , ... 
...... - 0 

0 
0 ,.." ...... " 

___ .-' 0 0 
,.,.", 0 0 o 0 0000 0 

~ 

o 0 

non-linear 
mode coupling, 
and transition 
(NOT Richtmyer) 

100 150 
K 8 t o 0 

200 

o '1 = 1t/2 o 

o 110= 1t/4 

~ 11 = 1t/8 o 

v 110= 1t/12 

o '1 = 101t/2 o 

0110 = 101t/4 

*' 110= 101t/8 

'V '1
0
= 101t/12 

" .,-- to. 5 

' '' t 1 

250 300 



Characterizing Small-Scale Production 
-7 zero-crossing wavenumber K (e.g., Sreenivasan et al. JFM '83) innovation for our nation' 
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K is the "zero crossing" 
wavenumber of the mass 
density fluctuation 

1 1 
1((t)~ =-----

A(t) Taylor length scale 

"transition" process indicated by rapid increase of K 



Spectral bandwidth of the turbulence 
Innovallon for our nation 

Spectral bandwidth proxy 
provides a measure of how 

IIturbulent" the flow is 

1J(t) = K(t)D(t) = D(t) ~ Integral scale ~ Re 
A(t) Taylor length scale A 
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Higher initial 'YJo leads to higher l1(t) at late times 
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Consequences of Bipolar RM Behavior 
reshock effects -

D(t) = 4 J (YsF6 )(1- (YSF6 ))dx 
t 
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innovation for our natio 

increasing 'YJo ow increasing 'YJo 
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Time (/.1s) 

y SF6 visualizations at 
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after first-shock 
(or after reshock) first-shocked re-shocked 
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Consequences of BiDolar RM Behavior 
innovation for our nation 

reshock effects - first shock effects 
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Planar Shock-Driven Turbulence 
Grinstein, Gowardhan, and Wachtor, PoF, 2011; Gowardhan, Ristorcelli and Grinstein; PoF Letters, 2011 

Shocked (double interface) Gas Curtain? Gowardhan and Grinstein, J. of Turb. 2011, in press , .••••...•......•....••••••...•..........•.... 

• RM bipolar behavior: ~ switch for 110 = K ~o --- 1 ~ 
~ ••••••••••..•..••••.••..••••• Q .•••.••.•.•••• 

: linear, ballistic, mix-width l5 -- t 

innovation for our nation 

: non-linear, mode coupling, mix-width l5 -- t 112 

~ transition to turbulence suggested 

~ more material mixing & smaller scales 

• Reshock effects on first shock, if 'YJo > 1 

• The modeler's (initial condition) challenge 
• two different instabilities & growth trends 

~ as YJo i enstrophy i isotropy i TKE i D I'J t i ALL GROW wtth YJo 

~ as rIo t enstrophy t isotropy t GROW wtth rJo 

TKE ~ D '" t 1/2 ~ DECREASE wtth rJ 0 

possible first "generalization": 'YJo ~ 'YJo A Ma 



I for stimulating discussions and for sharing information and data from their experiments. I 
............. .. .. .................................................................................................................................................................................................. ...................... .. ............................ .................... .. ...... .. .............................................................................................................................................................................. : 

t shocked t reshocked 

• Initial 3D GC characterization and modeling 

• Sensitivity of turbulence characteristics to ICs 

• Data reduction and bipolar RM behavior 



ILES RAGE simulations - SF6 mass fraction distributions 

Reflecting wall 

Unshocked Air 

Separately Simulated SF6 GC 

Shocked Air (M=1.2) 

innovation for our natio 



Direction of shock 

484S2&C; 

.0982296 

.1 11833 

- j ent Pla~e or measure~ 

U nshocked gas cu 11ain Plane of 

15 20 25 
Xmm 

20 PLIF SF 6 intensities (C / Cmax) in a 
horizontal plane 2 cm from nozzle exits 

Vertical PIV @ center of GC, gives estimates 
.of nozzle exit velocity ( -100 cm/sec ) 

• Composition & fluctuations of SF6 mixture at nozzle exits only estimated 

50-80% SF6 - rest Acetone (used as a tracer for PLIF), and air; 

• Uncharacterized co-flow and bottom suction used to stabilize the GC 

P-23 lab info insufficient to fully characterize 
3D initial GC conditions for RAGE simulations innovation for otJr natio 



• separate laminar NS-Boussinesq simulation of 
. SF6 falling through nozzle arrangement 

, • available info from lab. expts. used to 
constrain 3D GC simulation 

• no coflow, advective downstream Be 

• 75% SF6 - air (no acetone) at nozzle exits 
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Large scale noise 
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innovation for our nation 

typical experiment 

simulation with added noise 

Mikaelian's 20 
intensity model 

1= A(1 + Bcoskx) exp[ _/0. 2 / (1 + Ikoskx)2] 
1+ B 

Mass-density variance spectra of initial GC data indicates presence of small 
and large scale modes, in addition to 20 Mikaelian's dominant mode ... 

To mimic the noise present in the experiments, nozzle offsets and/or SF6 
concentration perturbations were added to baseline simulated GC ..... 



Large scale perturbation: Achieved by slightly offsetting 
(randomly, <O.OSR) the nozzles in the shock direction 

Small scale perturbation: Achieved by adding multimode 3D 
concentration perturbation (s.d. -2%) to baseline 3D GC 

aO: no perturbation (baseline) ••••••• 

a1: nozzle offset ••••••• 

a2: 3D concentration perturb. 
~ 3D Perturbation PtI1urbed 
G.~ 'MCh. d .~ Gasc~ 

a3: nozzle offset and 3D conc. Perturb. 

= ••••••• U",ertubed 3D Perturbabon Pertl¥bed 
Gas curtain 'Mth , d '" 2% Gas cut..,.. 

~D'RD 
innovation for our nation' 
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X-Computational Physics Division 

ILES RAGE of Shocked SFs Gas Curtain 
Multi-mode IC Effects on Mixing & Transition 

<f.'«: " . 4 +-. 
~DRD 
innovation for our natio 

non-perturbed GC 
"ballistic" growth dominates 

1.2 •• -----~-------. 

E I No pert. 
i 1 r Pert. 
£ - 0.8 
"0 
.~ 

~ 0.6 
:J 

U 
2 0.4 

i'i5 
02

0 I visualizations at horizontal ("measurements") plane 

500 
Time (J.lS) 

1000 ~ 

I 
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after reshock 
• enhanced mixing 

• more isotropic (late times) 

• self-similar decay spectra 

TKE spectra 

Gowardhan & Grinstein, JoT (2011), under review 
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ILES of Shocked SF6 GC vs. Expts. Los . lIwll()s .\'otiOlw/ Luh()l'u/oIT 

X-Computational Physics Division Gowardhan, Balasubramanian, Grinstein , Prestridge, AIM Paper 2011 innovation for OUJ naliol 

laminar 3D GC 
simulation 
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Robust agreement with lab. flow patterns and growth rates before reshock 
but sensitive to ICs after reshock ! 

over-predicted early growth reflects lower effective Atwood number in expts. 
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-case aO ~ unperturbed 
1.2H - case a1 

- case a2 

-- i - casea3 E 1 
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GC width threshold variability 
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GC width is defined as shockwise distance over which 
X(x) > X" based on a selected threshold X" ~ 0.95, 
where X(x) = 4~(x)(1- ~(x), and 

~(x) = ~ J PSF6 (X ,y,Z = 2) dy Lv ( ) 

Ly 0 p(x ,y,z = 2) 

• Simulated growth qualitatively 
consistent with P-23 experiments 

• Before res hock, 
GC widths for all simulations are in 
close agreement; 

discrepancies with expts . 
mainly attributed to 
different SF6 (air, and acetone) 
mixtures in initial GCs 

• After reshock, GC width growth 
rates are consistent but, 

"perturbed" #- "non-perturbed" 
-7 very sensitive to ICs 

and consequent interface 
conditions at reshock time 

Characterizing Reshock effects 
difficult for Expts. and LES ! 



• IC parameterization & additional GC cases 

• Data reduction to compare results associated with different ICs 

• Bipolar RM behavior also for the shocked GC ? 
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growth rates (first proposed by Jacobs et a/. 1996) 

7 curves collapse well in a "non-linear" ( -t1/2 ) group 
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When simulated results are plotted in non-dimensional form 

• cases with 110 > 'Jt/2 collapse in "non linear" group, 

• case with 110 < 'Jt/2 falls on "linear" group 

This demonstrates the bipolar RM behavior also for shocked GC 
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• Modeler's Initial Condition Challenge: 
different instabilities, 

growth trends, 
late-time characteristics 

• Instability behavior switches for 110 - 1 
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Bipolar RM behavior also demonstrated in terms 
of single IC parameter 'fJo for shocked GCs 

"Bipolar" RM - single interface " --av, = 51T/3 51C/6 51T/3 51C/12 

Gowardhan, Ristorcelli, Grinstein, PoF Letters 2011 
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Simulated initial 3D GG (constrained by lab. data) 
+ fluctuations ~ ICs for ILES RAGE innovation for our naUo 

Effective GC width data reduction (before reshock) with single parameter 

• robust agreement with expts. (despite IC uncertainties) 

( opportunities for defining RM test case) 

• bipolar behavior demonstrated for double-interface RM 

( a possible first "generalization" might involve: 170 -7 170 A Ma ) 

• RM behavior switches for ho - 1 (as in planar case) 

» low-ho : linear, ballistic, GC width - t 

» high-ho: non-linear, mode coupling, GC width - t1/2 

Outstanding Challenge for Experiments and LES (ILES) 
(high-llo) IC characterization (data-reduction) at reshock time 


