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COMPRESSIVE PROPERTIES OF LOW RELATIVE DENSITY
MATERIALS, BOTH ENGINEERED AND RANDOM
STRUCTURES.

C.M. Cady, E.M. Kober, D.M. Dattelbaum, C. Hammeter, F. Zok

The compressive constitutive behavior of low relative density materials bas been
characterized for various materials. It has been seen that engineered structures have a
better strength for relative density. These materials have been evaluated under static and
dynamic loading conditions as a function of temperature. High-strain-rate tests (1000—
2000 s—1) were conducted using a split-Hopkinson pressure bar (SHPB). Quasi-static and
intermediate-strain-rate tests were conducted on a hydraulic load frame. Localized
deformation and stress state instability during testing of foams and structured materials is
discussed in detail since the mechanical behavior over the entire range of strain rates
indicates non-uniform deformation. Additionally, investigation of the effect of processing
conditions on the mechanical behavior was investigated.
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Types of Foams

e Stochastic

- Syntactic Foam — Hollow particle in a matrix — High strength to
weight
- Open Cell — polyurethane(soft), metals, ceramic

- Closed Cell — polyethylene, polyurethane(rigid), neoprene,
polystyrene, expanded metals, ceramic

» Metal foams — cast and dissolve, gas injection, chemical
reaction

Closed cellﬁ%urethane foam
NYSA
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Types of Foams

* Periodic
- Corrugated — Mechanically deformed and bonded layers
- Slotted — connecting by slotting each piece
- Investment casting — wax mold
- Rapid prototyping — laser sintering, stereo lithography
» Metal foams — cast and dissolve, gas injection, chemical
reaction

Polymer micro-truss

“photo lithography” formed  Closed cell polyurethane foam
structure
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Uses

* Stochastic
- Polymeric — Cushions, insulation, Structural support & floatation
- Ceramic - insulation, filters, high temperature applications,

- Metal - filters, sound & energy absorption, catalitic converters,
structural support, reduce weight

* Cheap, Easy to make, Effective
* Periodic
- Polymeric — Precursor for metal forms, energy absorption
- Ceramic - insulation, armor, structural support at temperatures

- Metal — Heat transfer, filters, sound & energy absorption, structural
support, armor
* Lower density, Stiffer, engineered for specific purpose

Both stochastic and periodic foams are useful. There will
always be a cost/benefit question to be answered.
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Characteristic Behavior of Low Density structures

I. Linear elastic “bending” of
ligaments

Il. Pore collapse, buckling, and cell
3 1 wall failure

Nominal Stress

|
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| Ill. Densification
|

0 0.1 02 03 04 05 06 0.7
Nominal Strain

ATV
I Vl‘\ﬁ LAUR 10-06876 » Los Alamos



Mechanical Behavior - Stochastic
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SHPB - Traditional Data Analysis (Assumptions), Data
Reduction, to yield “Valid” SHPB-data

e e
3 2y b “l-wave” analysis uses only the reflected wave for
T fpp\ Transmited Wave strain rate and strain and only the transmitted wave for
= i |
g ' s stress.
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M Refiected | / sample at the incident bar-sample interface using a
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Time (microseconds)
« 1) After initial “ring-up”- specimen achieves force equilibrium along its
length -
+ Uniaxial stress state achieved and maintained,
+ Time dependent on sample sound speed and geometry,
+ 2) specimen is deforming uniformly, (no non-homogeneous, localized
plastic flow, fracture)
+ 3) sample unconstrained laterally (uniaxial stress) - friction is minimized,
* 4) volume of sample remains constant, [ no foams, etc.]
+ 5) bar elastic properties invariant [no temperature gradients]
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Conservation of Volume?

50% Engr. Strain 40% Engr. Strain
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Uniform Deformation?

Incident Bar - Impact face High Rate Test Low Rate Test
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Mechanical Behavior - Periodic
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Deformation behavior

Buckling in polymer micro lattice structure

Buckling in hollow tube micro lattice structure

Evans, He, et. al., JIE (2010)pp947-959
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Deformation behavior
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SHPB - Traditional Data Analysis (Assumptions), Data

Reduction, to yield “Valid” SHPB-data
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1) After initial “ring-up”- specimen achieves force equilibrium along its
length -

+ Uniaxial stress state achieved and maintained,

« Time dependent on sample sound speed and geometry,
« 2) specimen is deforming uniformly, (no non-homogeneous, localized

plastic flow, fracture)

« 3) sample unconstrained laterally (uniaxial stress) - friction is minimized,
+ 4) volume of sample remains constant, [ no foams, etc.]
« b) bar elastic properties invariant [no temperature gradients]
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Challenges with Polymer SHPB Testing - Use of Mg
Pressure Bars

SHPB testing of Polymeric materials is complicated by their low wave speeds and the
dispersive constitutive response of these materials

Two chief technical problems

— Low sound speed (restricts attainment of stress-state equilibrium) -- thinner sample
thickness can reduce this problem to a limit

— Low signal to noise on SHPB data
+ Maraging 350 Steel (E ~220 GPa) - elastic to ~ 2400 MPa
+ Mg (E ~45 GPa) - elastic to ~ 100 MPa - improves response
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Strain Rate and Temperature Properties - Stochastic

Soft foams (rubbery, “shape memory™)

* visco-elastic for temperatures of interest.

* There are aspects like Mullins effects and aging that change material response with
cyclic loading and time

* Not strain rate sensitive

Brittle Foam (rigid polyurethane, ceramic)

* Properties are determined by processing

* Does not appear to be strain rate sensitive

* The foam has a temperature sensitivity

» Sample dimensions can lead to different failure modes.
* Peak load carrying at initial failure

Metal foams

» Collapse from impact face at high strain rates, randomly at low rates
« Little strain rate sensitivity

» Failure by pore collapse
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Strain Rate and Temperature Properties - Periodic

Polymer

» Permanent softening of structure due to local bending of struts.

* Fracture of struts may occur depending on material condition (curing)
» Not strain rate sensitive

Metal

* Collapse from impact face at high strain rates, randomly at low rates

» Little strain rate sensitivity

* Failure by ligament bending

» Initial “bending” may be strain rate sensitive but subsequent deformation
is strain rate insensitive
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Summary

* The failure behavior of both stochastic and
periodic structures is strain rate dependent —
but the mechanisms differ.

* The stress-strain behavior of the structures is
similar in nature.

* Characterization of soft materials at high strain
rates presents many challenges

* Periodic structures should have a higher
stiffness to weight and can be made for
specific applications
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