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Abstract

=  We use the S-BIE to perform a systematic study of time series analysis,
using multiple noise regimes, and temporal degrees of freedom.
Analyzing quality of the result obtained (and comparing that quality to
that obtained with a static analysis). We are also interested in the
optimization difficulty under the static and time series situations.

Fa
)
- Los Alamos
Operated by Los Alamos National Secunty. LLC for the U.S. Depatment of Energy's NNSA T YA =l
aNTSA

10/5/2011



10/5/2011

The Bayesian Inference Engine is:

* The Lab’s primary toolkit for DARHT
Radiography Analysis:

The BIE Consists of:

* A set of tools for radiographic forward
modeling and parameter optimization

* A functional reactive graphic programming
language for interfacing with those tools




Comparison
Graphical Scripting

* Intuitive * Powerful
* Interactive * Reproducible

Preliminary results and uses

* We have created a prototype scripting
language (the S-BIE), and implemented several
of the BIE’s forward modeling tools within the
new language.

 Scripting enables systematic studies

* We have applied this new scripting language
to analyze several time series problems
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Phase 2: “Second Axis" \
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DARHT Axis 2 Accelerator

o 2-ms, 2-kA, 18.4-MeV electron beam
 for 4-pulse radiography.
* Linear Induction Accelerator with wound

Metglass cores and Pulse Forming Networks
(PFNs) .

* The Injector uses a MARX bank with 88 type E
PFN stages at 3.2 MV.

* Thermionic cathode.
* 4 micropulses - variable pulse width.
* Operations began in 2008.




Time Series Analysis

* To date we have analyzed each element of
DARHT axis 2 time series data independently

* But we should be able to use information in
the time series to compensate for some of the
noise, and get better results.

The forward-modeling framework makes possible a
global optimization procedure

Now, physics-based constraints on the evolution of the
time-series data will also constrain the (global) solution |

Prior knowledge

provides additional
constraints al each
time

Data constrain

solution at
each time
t3

UNCLASSIFIED

SOLUTION:
Evaluated
Density

DATA:
Transmission
(experiment)
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These physics-based constraints will maximize
information extracted from each dataset

Consider an evolving interface: CONCG‘Qt CEIFI we |earn Someth[ﬂg about
the solution at time 3 (blue) from the data

at surrounding times?

Approach: use physics to constrain
solution at each time based upon time-
series of data.

) WHEN WILL THIS APPROACH HAVE
time GREATEST VALUE?
When certain conditions are met:

Datamust be —1) Must have the time between
correlated in time! measurements (At) on the order of a
relevant time scale of the flow; and

Perfect data would be the only required _.2) Must have non-per‘fect data {due to

int... (Noisie h .
constuing.- (Nomicy daks meas the noise, background levels, etc).
global optimization adds more value).
UPRMIOU U LUB AN YRR (81 AT, LLv (a8 ue U, weparanet of Energy’s NNSA ;J“)S.!ﬂ‘

Example

= Graded Polygon:
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S-BIE Simulated Expanding Object

* Object model:

S!hldﬂled Radiograph, Sieulaty ;kﬁd@ﬁg_rapl; Simulated Radipgraph | 0 Simudated Radiggrapgh
TS L e Step 2 S Time Stegs 3 YL meStend .

Explore Relationships Between:

* Degrees of temporal freedom
* Noise
* Optimization Difficulty




Hypothesis 1:

* The complexity of the physics model (Degrees
of temporal freedom)

— Lower freedom provides more information from
time series

— Higher freedom provides less information from
time series

Hypothesis 2:

* Noise
— Lower noise provides more static information
— Higher noise provides less static information
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Hypothesis 3:

* Optimization Difficulty
— Time series analysis can produce a more difficult
optimization problem

— The difficulty is related to the temporal degrees of
freedom

How to Model Physics

* There are many ways to model the time series
— Simplest time series case:
* Matching a polynomial of degree n (perfect physics)

— More complex case:

* Penalize divergence from some presumed smooth
motion through time (imperfect physics)

* We will begin our analysis with the simplest
case
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Radius Polynomials

* Degrees of Temporal Freedom:
— 1. r = knownConst + p;t
—2i r=po+pit
=31 1 =p,+pit + pyt?

—4: 1 =py+ Pt + pyt? + pst3

—n: T =pot+pit +0t? +pst3+ o+ gt

Signal to Noise

 Signal
— 15in center
— 1 at edge

* Noise
— Std deviations

10



Results

1 Degree of Temporal Freedom
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1 Degree of Temporal Freedom

* Results

— Time Series Analysis is best for all noise ranges
considered

— Time Series Analysis is slightly more difficult for
the optimizer

2 Degrees of Temporal Freedom
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Prediction

* Increased degrees of freedom will make the
time series analysis more difficult

NoO noise
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Global Simultaneous Dynamic Optimization
is Harder than Static Optimization
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Benefit of Dynamic Analysis Increases
as the Noise Increases

Three Degrees of Temporal
Freedom.
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Time Series Results

1DF: Simple TSA is always superior to static
analysis
2DF: Simple TSA is almost always superior to
static analysis.
3DF: Simple TSA is better with VERY high Signal to
Noise Ratios, 1:10 at the edges, and 15:10 in the
center.
— Average SNR?

* =7:10
4DF: Unknown...
— Approaching an under/constrained problem

10/5/2011
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Time Series Results

* Time series analysis involves a far more difficult
optimization problem than is present in static analysis.

* Interestingly enough, with lower noise levels the
optimization problem is more “difficult” in the sense
that it is possible to refine the answer to a greater
degree

* When the optimization problem can be solved, time
series analysis can outperform static analysis for some
combinations of noise and temporal degrees of
freedom.

* The number of optimization steps necessary before
time series analysis outperforms static analysis
depends on the noise and the temporal degrees of
freedom.

Unanswered Time Series Questions

* There exists a level of temporal degrees of
freedom where static analysis is always better
(must be greater than 3, we need to try higher
values)?

— What happens when the time series polynomial is
under constrained (more temporal degrees of
freedom than there are observation time steps)

* Does that change if you move to a more
complex form of time series analysis (away
from simply matching a polynomial).

10/5/2011
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Conclusions

* The new scripting language (S-BIE) allowed for complex
iterative algorithmic evaluation
— The BIE’s graphical interface was insufficient for this
systematic study
* Time series analysis shows potential for real
applications at DARHT
— Improvement will depend on the noise level present in the
data.
— Improvement will depend on how tightly the physics can
constrain the temporal motion of the object
— Complex global optimization will likely require
improvements in the BIE’s function optimization
algorithms

Future Work

* Scripting interface:
— Incorporation of more of the BIE’s tools into the new
scripting language
— Integrating the two interfaces together in one tool
* Time series analysis:
— Explore higher temporal degrees of freedom
— Analysis of more complex shapes
— Implementation of more advanced function optimization
routines

— Exploration of other techniques for taking advantage of
time series data besides fitting a polynomial.

10/5/2011

24



