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Abstract 

• We use the S-BIE to perform a systematic study of time series analysis, 
using multiple noise regimes, and temporal degrees of freedom. 
Analyzing quality of the result obtained (and comparing that quality to 
that obtained with a static analysis). We are also interested in the 
optimization difficulty under the static and time series situations . 
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The Bayesian Inference Engine is: 

• The Lab's primary toolkit for DARHT 
Radiography Analysis: 

The BIE Consists of: 

• A set of tools for radiographic forward 
modeling and parameter optimization 

• A functional reactive graphic programming 
language for interfacing with those tools 
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Comparison 

Graphical Scripting 
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• Intuitive • Powerful 

• Interactive • Reproducible 

Preliminary results and uses 

• We have created a prototype scripting 
language (the S-BIE), and implemented several 
of the BIE's forward modeling tools within the 
new language. 

• Scripting enables systematic studies 

• We have applied this new scripting language 
to analyze several time series problems 
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DARHT: 

DARHT Axis 2 Accelerator 

• 2-ms, 2-kA, 18.4-MeV electron beam 
• for 4-pulse radiography. 
• Linear Induction Accelerator with wound 

Metglass cores and Pulse Forming Networks 
(PFNs) . 

• The Injector uses a MARX bank with 88 type E 
PFN stages at 3.2MV. 

• Thermionic cathode. 
• 4 micropulses - variable pulse width. 
• Operations began in 2008. 
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Time Series Analysis 

• To date we have analyzed each element of 
DARHT axis 2 time series data independently 

• But we should be able to use information in 
the time series to compensate for some of the 
noise, and get better results. 

The forward-modeling framework makes possible a 
global optimization procedure 

Now, physics-based constraints on the evolution of the 
time-series data will also constrain the (global) solution 

Prior knowledge ---,---+---,---+---,.--it-----, 
provides additional 1 
constraints at each t 
time 

UNCLASSIFIED 
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SOLUTION: 
Evaluated 
Density 

DATA: 
Transmission 
(experiment) 
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These physics-based constraints w ill maximize 
information extracted from each dataset 

Consider an evolving interface: 

time 

Concept: Can we learn someth ing about 
the solution at time 3 (blue) from the data 
at surrounding times? 

Approach : use physics to constrain 
solution at each time based upon time­
series of data. 

WHEN WILL THIS APPROACH HAVE 
GREATEST VALUE? 

When certain conditions are met: 

Data must be _ 1} Must have the time between 
correlated in time! measurements (ilt) on the order of a 

relevant time scale of the flow; and 

Perfect data would be the only required - 2} Must have non-perfect data (due to 
constraint... (Noisier data means the noise, background levels, etc) . 
global optimization adds more value) . 
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Example 

• Graded Polygon: 
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10/5/2011 

S-BIE Simulated Expanding Object 

• Object model: 

Explore Relationships Between: 

• Degrees of temporal freedom 

• Noise 

• Optimization Difficulty 
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Hypothesis 1: 

• The complexity of the physics model (Degrees 
of temporal freedom) 

- Lower freedom provides more information from 
time series 

- Higher freedom provides less information from 
time series 

Hypothesis 2: 

• Noise 
- Lower noise provides more static information 

- Higher noise provides less static information 
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Hypothesis 3: 

• Optimization Difficulty 
- Time series analysis can produce a more difficult 

optimization problem 

- The difficulty is related to the temporal degrees of 
freedom 

How to Model Physics 

• There are many ways to model the time series 
- Simplest time series case: 

• Matching a polynomial of degree n (perfect physics) 

- More complex case: 

• Penalize divergence from some presumed smooth 
motion through time (imperfect physics) 

• We will begin our analysis with the simplest 
case 
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Radius Polynomials 

• Degrees of Temporal Freedom: 

-1: r = knownConst + Pit 

- 2: r = Po + Pi t 

- 3: r = Po + Pi t + P2 t 2 

- 4: r = Po + Pi t + P2 t 2 + P3 t 3 

Signal to Noise 

• Signal 
- 15 in center 

-1 at edge 

• Noise 
- Std deviations 
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1 Degree of Temporal Freedom 
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1 Degree of Temporal Freedom 

• Results 

- Time Series Analysis is best for all noise ranges 
considered 

- Time Series Analysis is slightly more difficult for 
the optimizer 

2 Degrees of Temporal Freedom 
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Prediction 

• Increased degrees of freedom will make the 
time series analysis more difficult 
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Global Simultaneous Dynamic Optimization 
is Harder than Static Optimization 
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Benefit of Dynamic Analysis Increases 
as the Noise Increases 

5.00£+02 '-1 ----- -- ------
I 

4.50£+02+----------------r----

4.00£.02+----------- -----/------

3.50£+02r--
3.00£+021---- --

2.50£+02+------------r-------

2.00£.02 +---- ----

1.50£+02 +------------r 

1.00£+O2+------~-----------

5.00£+01 +-1 ----./----

I 

10 12 

Three Degrees of Temporal 
Freedom. 
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Noise 10 
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Summary, 3 Temporal Degrees of 
Freedom 
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Time Series Results 
• lDF: Simple TSA is always superior to static 

analysis 

• 2DF: Simple TSA is almost always superior to 
static analysis. 

• 3DF: Simple TSA is better with VERY high Signal to 
Noise Ratios, 1:10 at the edges, and 15:10 in the 
center. 
- Average SNR? 

• :::::7:10 

• 4DF: Unknown ... 
- Approaching an under/constrained problem 
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Time Series Results 
• Time series analysis involves a far more, difficult 

optimization problem than is present in static analysis. 
• Interestingly enough, with lower noise levels the 

optimization problem is more Itdifficult" in the sense 
that it is possible to refine the answer to a greater 
degree 

• When the optimization problem can be solved, time 
series analysis can outperform static analysis for some 
combinations of noise and temporal degrees of 
freedom. 

• The number of optimization steps necessary before 
time series analysis outperforms static analysis 
depends on the noise and the temporal degrees of 
freedom . 

Unanswered Time Series Questions 

• There exists a level of temporal degrees of 
freedom where static analysis is always better 
(must be greater than 3, we need to try higher 
values)? 
- What happens when the time series polynomial is 

under constrained (more temporal degrees of 
freedom than there are observation time steps) 

• Does that change if you move to a more 
complex form of time series analysis (away 
from simply matching a polynomial). 
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Conclusions 

• The new scripting language (S-BIE) allowed for complex 
iterative algorithmic evaluation 
- The BIE's graphical interface was insufficient for this 

systematic study 

• Time series analysis shows potential for real 
applications at DARHT 
- Improvement will depend on the noise level present in the 

data. 
- Improvement will depend on how tightly the physics can 

constrain the temporal motion of the object 
- Complex global optimization will likely require 

improvements in the BIE's function optimization 
algorithms 

Future Work 

• Scripting interface: 
- Incorporation of more ofthe BIE's tools into the new 

scripting language 
- Integrating the two interfaces together in one tool 

• Time series analysis: 
- Explore higher temporal degrees of freedom 
- Analysis of more complex shapes 
- Implementation of more advanced function optimization 

routines 
- Exploration of other techniques for taking advantage of 

time series data besides fitting a polynomial. 
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