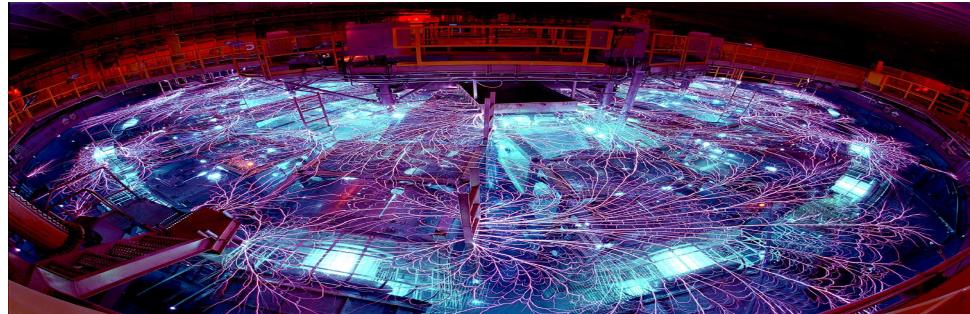
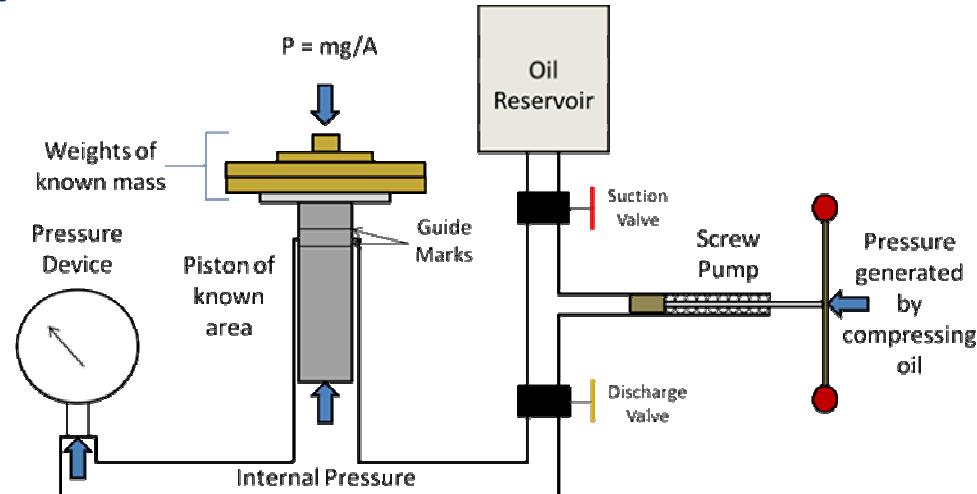


Development of a Deadweight Tester into a Pressure Testing Station at the STAR Facility


Zacarie Hertel – Org. 1647,
Solid Dynamics Experiments
Union College,
Schenectady, NY

SAND2013-6284C

*Exceptional service
in the national interest*


August 6, 2013
Manager: Gordon Leifeste
Mentors: Bill Reinhart,
Tom Thornhill

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
SAND No. 2011-XXXX.

Deadweight Tester

- Generates a known pressure based on fundamental units
 - Mass (kg, lb)
 - Area (m², in²)
 - $P = Mg/A$
- Weights of known mass are placed on a piston of known area

- Pressure generated by compressing oil with a hand pump
 - Pressure is known when force of the internal pressure makes the piston rise to equilibrium position

Theory of Operation

Pascal's Law

- Static pressure exerted on an internal fluid is distributed evenly through the fluid
 - Only changes in pressure come from internal effects
 - Hydrostatic Pressure
 - $\Delta P = \rho g \Delta h$
 - Since Δh is very small, hydrostatic effects are considered to be negligible

System Accuracy

- Using correcting equations, can be accurate up to 0.02% of the indicated pressure.

$$F_{buoyancy} = 1 - \frac{D_{air}}{D_{mass}}$$

$$P_{head} = D_{oil}(H - H_{ref})$$

$$F_{press} = \frac{1}{1 + bP}$$

$$F_{temp} = \frac{1}{1 + (a_{cyl} + a_{piston})(T - T_{ref})}$$

$$F_{gravity} = \frac{G}{G_s}$$

$$P_{corr} = \frac{1}{1000} \left(\frac{M_{app}}{A_{cyl}} F_{gravity} F_{buoyancy} F_{temp} F_{press} \right) \pm P_{head}$$

D_{air} = Density of Air at test pressure and temperature

D_{mass} = Density of the weights (8.39 g/cm³)

D_{oil} = Density of hydraulic oil (1.11 g/cm³)

H = Height above base of device being tested

H_{ref} = Height of extended piston above base (6.4 cm)

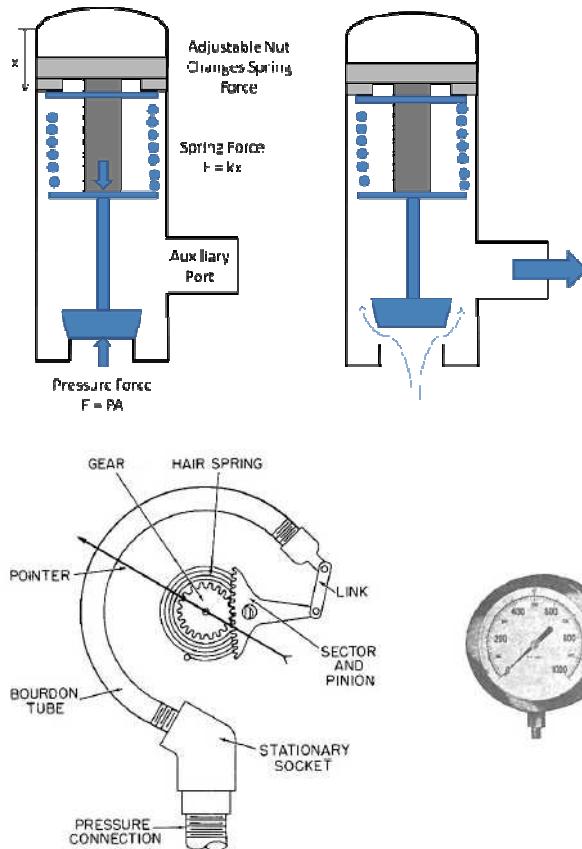
b = Pressure Coefficient of the Effective Area (9.39x10⁻⁷ cm²/kg)

P = Nominal Pressure listed on weights

$a_{cyl} + a_{piston}$ = Thermal Expansion Coefficient of Piston and Cylinder ($a_{cyl} + a_{piston} = 2.59 \times 10^{-5} \text{ }^{\circ}\text{C}^{-1}$)

T = Ambient Temperature during testing (°C)

T_{ref} = Temperature at time of calibrating (25°C)


G = Local Gravity (978.468 cm/s² in Albuquerque)

G_s = Standard Gravity (980.665 cm/s²)

M_{app} = Mass of the weights applied

A_{cyl} = Area of the Piston used

Project Motivation

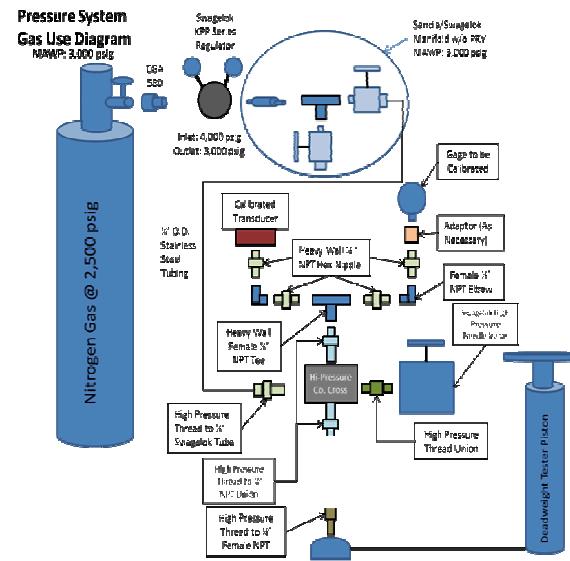
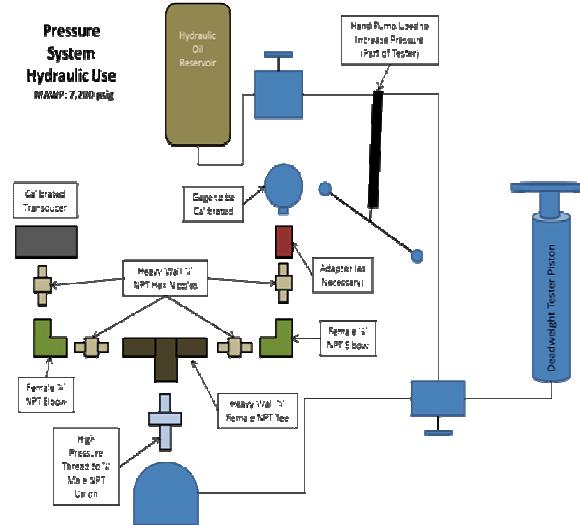
[http://enginemechanics\(tpub.com/14037/css/14037_58.htm](http://enginemechanics(tpub.com/14037/css/14037_58.htm)

- Pressure Relief Valves
 - Overpressure protection for pressure systems
 - Valve opens when certain pressure in system is reached
- Pressure Gauges
 - Uses a mechanical means of indicating the pressure inside of a system
- Pressure Transducers
 - Converts pressure to an electrical signal
 - Signal can be read in order to determine internal pressure

Project Motivation

Testing Intervals

- Pressure Relief Valves
 - Corrosive Environments
 - Once a year
 - High Pressure (>3,000 psi)
 - Every other year
 - All Other Valves
 - Every three years maximum
- Pressure Gauges and Transducers
 - Dependent on operators needs
 - Frequent inspection ensures accuracy



Testing Requirements

- Inspect Devices for Damage
 - Corrosion
 - Leakage
- Have a way of knowing the pressure in the tester
 - Needs to be a level of accuracy higher than the device being tested
- Be able to accept, repair, or replace the device being tested

Project Requirements

- Meet all Sandia Requirements as a test station
 - Be able to perform same operations as the Maintenance and Calibration Department
- Have a second port for a reference transducer
 - Would not be possible to know pressure at which PRV opens and closes using the weight measurement approach
- Able to accommodate all devices in the facility
 - Large range of pressures (10-10,000 psig)
 - Various inlet/outlet sizes
- Can test devices without the use of hydraulic oil
 - Some devices cannot be contaminated with anything other than a gas
 - Compressed Nitrogen Gas would need to be used as the working fluid

System Design

Results

- Currently, the device has been certified by Sandia for use
- To this point, only pressure relief valves have been tested
 - With the range of valves tested, both the hydraulic oil and nitrogen gas configurations were used
- All valves were tested according to Sandia requirements
 - A total of 18 valves from the facility were able to be tested
 - All valves were able to be reinstalled within the day
 - The majority of valves were within tolerances
 - Those that were not within tolerance were able to be repaired at the station
 - One valve required replacement, and one was found and tested

Conclusions

- System has been operating as intended
 - Seems to be reading pressure accurately
 - Valves that were out of tolerance were so by a significant factor
 - System issues do not seem to be the cause of test failure
- Minor improvements could be made to the system
 - A flow meter could be used when testing pressure relief valves
 - Depending on the valve, it may be hard to determine if it is opened based on visual or audio cues
 - The weights and piston should be re-measured
 - Would allow for more accurate calculations of the internal pressure
 - Dimensions could have changed since last measured
 - Could be used instead of reference transducer for gauge and transducer calibrations
 - More accurate over full range
 - Less complicated

QUESTIONS ?