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Towards nano-scale control of thermal transport

Importance:
• Integrated circuit thermal management

- encapsulants for electronic packaging
- thermal interface materials
- transition to 3D stacked chip and optical interconnects

• Efficiency of switching in phase change memories
• Thermoelectrics (low-dimensional systems, multiphase nanocomposites)

J. Vac. Sci. Technol. B, 29, pp. 032207 (2011); 

PC-RAM with low k inner-layer 

Nature Materials, 7, pp.105-14 (2008)

Decoupling electron and phonon 
transport in thermoelectrics

Layered structures of ordered 
polyhedra separated by 
disordered cations for electron-
crystal / phonon-glass structures.

http://en.wikipedia.org/wiki/Interfacial_thermal_resistance
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Heatsink
http://en.wikipedia.org/wiki/Thermodynamic_efficiency
http://en.wikipedia.org/wiki/Thermal_grease
http://en.wikipedia.org/wiki/Silicone_oil
http://en.wikipedia.org/wiki/Aluminum_oxide
http://en.wikipedia.org/wiki/Zinc_oxide
http://en.wikipedia.org/wiki/Boron_nitride
http://en.wikipedia.org/wiki/Copper
http://en.wikipedia.org/wiki/Silver
http://en.wikipedia.org/wiki/Aluminum
http://en.wikipedia.org/wiki/Bulk_material
http://en.wikipedia.org/wiki/Nanocomposite


Tuning thermal conductivity of polymers via chain alignment

unstrained

MD simulations:

J. Polymer Sci. Pt. B, 37, pp.3359–67 (1999)  and  Nature Nanotech., 5, pp.251-55 (2010)

strained  ( = 2)

Phys. Rev. B, 81, pp.174122 (2010)

>5-fold increase in 

Polyethylene
Ultradrawn micro and nano-fibers:  120- to 300-fold increase in in 

Polyethylene

Theoretical predictions of  for individual polyethylene chain:  
350 W/(m·K) or even divergent

Nature Nanotech., 5, pp.251-55 (2010) and Phys. Rev. B, 79, pp.144305 (2009)

App. Physics Lett., 97, pp. 011908 (2010)

Poly(methyl methacrylate)

Up to 50% increase in  for PMMA fibers with draw ratio of 4.
Only modest increase in  for polymer brush samples.



Self-Assembly of Block Copolymers

diblock copolymer: two immiscible polymer blocks covalently bonded together

• periodicity depends on polymer molecule length

• morphology depends on the volume fraction of each block

• equilibrium phases include periodic structures composed of lamellae, cylinders, spheres, and gyroids

• our block copolymer choice:  symmetric polystyrene-b-PMMA
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Mat. Res. Soc. Bull., 33, pp. 838 (2008)
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Time-domain thermoreflectance (TDTR)

Spectra Physics Mai Tai
90 fs pulses at 80 MHz

785 nm

• Can measure thermal conductivity of thin films () and thermal boundary conductance 
between films (h)

• Nanometer axial spatial resolution (~10’s of nm)
• Femtosecond to nanosecond temporal resolution
• Noncontact
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Film properties for initial study

Sample 
number

thickness* 
[nm]

expected # of 
periods (n)

expected 
lamellar period

Mn of each 
block [g/mol]

spin-coating 
speed [rpm]

spin-coating 
conc. [wt. %]

spin-coat 
solvent

anneal hold 
Temp. [°C}

anneal hold 
time [hr]

A 55 disordered -- 18k 4250 1.5 toluene n/a n/a

B 55 2 27.5 18k 4250 1.5 toluene 230 16

C 26 disordered -- 18k 4250b 0.75 toluene n/a n/a

D 26 1 26 18k 4250b 0.75 toluene 230 16

* from single wavelength ellipsometry

If the annealed samples (B and D) have good lamellar ordering, they should have the following layered structural form:
Silicon//31.4 nm thick thermal oxide {//13.75 nm thick poly(methyl methacrylate)//13.75 nm thick poly(styrene)}n //air
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Figure 2 Thermal conductivity of our block copolymer (bcp) films compared to that of spun-cast PMMA
films and polymer brushes†. The ordered films exhibit a higher thermal conductivity than the disordered
films, spun-cast films, and brushes.

† Appl. Phys. Lett., 97, pp.011908 (2010).

Thermal conductivity of disordered and self-assembled lamellar 
PS-b-PMMA films vs. thin homopolymer films / polymer brushes. 

Bulk thermal conductivity for individual homopolymers = 
0.17 and 0.20 Wm−1K−1 for PS and PMMA 

PMMA

PS



AFM: annealed films with n = integer have terraced structure

AFM Error Signal image, n = 1

Step heights: 28.2nm 28.4nm 27.2nm                                            27.7nm

AFM Topography image, n = 3



Surface Segregation Drives terracing

ti = n Lo

ti = (n+1/2) Lo

symmetric wetting

ti = initial film thickness

asymmetric wetting

ti = n Lo
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Block copolymer asymmetric wetting condition 
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Modified sample preparation

1.6% off target thickness for n = 8.5 still 
gave terracing.  Missing ~35% of top layer

Must be within ~2nm of target thickness 
to prevent terracing on top layer.

Toluene too volatile for accurate spin-
coating.

• Use PGMEA as PS-b-PMMA spin-coating solvent for more 
precise control of thickness
• Anneal under milder temperature  (~36 hrs at 200°C 
instead of 16 hours at 230°C)
• Check all samples, annealed (layered) and un-annealed 
(amorphous) under AFM to verify uniform film coverage

target thickness:  ti = (n+1/2) Lo

thickness* 
[nm]

st dev. 
[nm]

expected # of 
periods (n)

expected 
lamellar period 
thickness [nm]

201.75 2.44 7.5 26.9

183.30 0.61 6.5 28.2
160.45 0.11 5.5 29.2

129.01 0.68 4.5 28.7
99.08 1.21 3.5 28.3

71.44 2.47 2.5 28.6
41.84 0.16 1.5 27.9

15.28 0.05 0.5 (++) 30.6
14.69 0.04 0.5 (+) 29.4

14.06 0.06 0.5 28.1
13.10 0.06 0.5 (-) 26.2

* from single wavelength ellipsometry

Sample description

n = 8.5  (AFM Error Signal)



Typical AFM results
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n = 1.5, annealed

5 m

rmsrms roughness: 2.6Åroughness: 2.6Å
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Typical X-ray reflectivity results
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NEW TDTR DATA FROM Patrick Hopkins 



Conclusions
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1.

Ross et al., MRSB 33 838 (2008) 

block A

block B

Start with diblock copolymer
(polystyrene-b-PMMA) and compare 
lamellar vs. disordered phase

Example block copolymer phases:



Material Tquench T T Tg Tassembly
TODT

Polystyrene (PS) ? ~360-370K ~380K n/a n/a

PMMA ? ~275K- 313K ~406K n/a n/a

18kPS-b-
18kPMMA

< 173K ~473K 513-548K

Temp.

time

RT

T>TODT

Tassembly

T

T

Tg

TODT

> 15 minutes

Tquench<Tg,,

> 30 minutes

Tquench<Tg,,

Proposed Anneal Schedule for in-situ thermoreflectance study

Black  un-annealed sample
Red  previously annealed 
(assembled) sample



Can we measure in-plane thermal transport? 
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Tuning thermal conductivity of polymers via chain alignment

unstrained

MD simulations:

J. Polymer Sci. Pt. B, 37, pp.3359–67 (1999)  and  Nature Nanotech., 5, pp.251-55 (2010)

strained  ( = 2)

Phys. Rev. B, 81, pp.174122 (2010)

>5-fold increase in 

Phys. Rev. B 82, pp.144308 (2010)

Polyethylene
Ultradrawn micro and nano-fibers:  120- to 300-fold increase in in 

Polyethylene

Theoretical predictions of  for individual polyethylene chain:  
350 W/(m·K) or even divergent

Nature Nanotech., 5, pp.251-55 (2010) and Phys. Rev. B, 79, pp.144305 (2009)

1D-to-3D transition of phonon heat conduction in polyethylene 
using molecular dynamics simulations
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Surface Assembly Misunderstanding
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Thermal transport in thin block copolymer films

q (Angstroms
-1

)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

N
o
rm

a
liz

e
d
 I

n
te

n
si

ty

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

Film 2

Q (Angstroms-1)

0.00 0.05 0.10 0.15 0.20 0.25

N
o

rm
a

liz
e

d
 I

n
te

n
si

ty

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

Sample 
number

thickness* 
[nm]

expected # of 
bilayers (n)

expected bilayer 
thickness (x + y)

Mn of each 
block [g/mol]

spin-coating 
speed [rpm]

spin-coating 
conc. [wt. %]

spin-coating 
solvent

1 55 2 27.5 18k 4250 1.5 toluene
2 25.5 1 25.5 18k 3750 0.75 toluene
3 60 3 20 10k 3375 1.5 toluene
4 56.5 3 19 10k 4500 1.5 toluene
5 22.5 1 22.5 10k 1250 0.5 toluene
6 21 1 21 10k 2000 0.5 toluene

The density of PMMA is ~1.18 or 1.19, and PS is ~ 1.05



Thermal transport in thin block copolymer films
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Better spin-coating solvent

Replacing toluene with PGMEA 
(1-methoxy-2-propyl-acetate)
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Dilute PGMEA spin curves

So far only two data points for each concentration (had four thermal oxide chips left)
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