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Towards nano-scale control of thermal transport

Importance:
* Integrated circuit thermal management
- encapsulants for electronic packaging
- thermal interface materials
- transition to 3D stacked chip and optical interconnects
* Efficiency of switching in phase change memories
* Thermoelectrics (low-dimensional systems, multiphase nanocomposites)

PC-RAM with low k inner-layer Decoupling electron and phonon
transport in thermoelectrics
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Layered structures of ordered
polyhedra separated by
disordered cations for electron-
crystal / phonon-glass structures.

J. Vac. Sci. Technol. B, 29, pp. 032207 (2011); Nature Materials, 7, pp.105-14 (2008)
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Tuning thermal conductivity of polymers via chain alignment

Polyethylene
Ultradrawn micro and nano-fibers: 120- to 300-fold increase in in K

J. Polymer Sci. Pt. B, 37, pp.3359-67 (1999) and Nature Nanotech., 5, pp.251-55 (2010)

Polyethylene
MD simulations:

Theoretical predictions of k for individual polyethylene chain:
350 W/(m:-K) or even divergent

Nature Nanotech., 5, pp.251-55 (2010) and Phys. Rev. B, 79, pp.144305 (2009)

Poly(methyl methacrylate)

Up to 50% increase in ¥ for PMMA fibers with draw ratio of 4.
Only modest increase in k for polymer brush samples.
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Phys. Rev. B, 81, pp.174122 (2010)
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App. Physics Lett., 97, pp. 011908 (2010)



Self-Assembly of Block Copolymers

diblock copolymer: two immiscible polymer blocks covalently bonded together

* periodicity depends on polymer molecule length

* morphology depends on the volume fraction of each block

* equilibrium phases include periodic structures composed of lamellae, cylinders, spheres, and gyroids
* our block copolymer choice: symmetric polystyrene-b-PMMA
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Time-domain thermoreflectance (TDTR)

e Can measure thermal conductivity of thin films (k) and thermal boundary conductance
between films (h)

e Nanometer axial spatial resolution (~10’s of nm)

e Femtosecond to nanosecond temporal resolution

e Noncontact
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Film properties for initial study
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Sample [ thickness* | expected # of expected M, of each | spin-coating | spin-coating | spin-coat | anneal hold [anneal hold
number [nm] periods (n) lamellar period | block [g/mol] | speed [rpm] | conc. [wt. %] | solvent | Temp. [°C} | time [hr]
A 55 disordered -- 18k 4250 1.5 toluene n/a n/a
B 55 2 27.5 18k 4250 1.5 toluene 230 16
C 26 disordered -- 18k 4250b 0.75 toluene n/a n/a
D 26 1 26 18k 4250b 0.75 toluene 230 16

* from single wavelength ellipsometry

If the annealed samples (B and D) have good lamellar ordering, they should have the following layered structural form:
Silicon//31.4 nm thick thermal oxide {//13.75 nm thick poly(methyl methacrylate)//13.75 nm thick poly(styrene)}_ //air




Thermal conductivity of disordered and self-assembled lamellar
PS-b-PMMA films vs. thin homopolymer films / polymer brushes.

Effective thermal conductivity
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0.17 and 0.20 Wm~1K-1 for PS and PMMA
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Figure 2 Thermal conductivity of our block copolymer (bcp) flms compared to that of spun-cast PMMA
films and polymer brushest. The ordered films exhibit a higher thermal conductivity than the disordered

films, spun-cast films, and brushes.
T Appl. Phys. Lett., 97, pp.011908 (2010).
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AFM: annealed films with n = integer have terraced structure
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Surface Segregation Drives terracing
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Block copolymer asymmetric wetting condition

(n+1/2) L,

(... repeats n times)
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Modified sample preparation

n=8.5 (AFM Error Signal)

* Use PGMEA as PS-b-PMMA spin-coating solvent for more
precise control of thickness

* Anneal under milder temperature (~36 hrs at 200°C
instead of 16 hours at 230°C)

* Check all samples, annealed (layered) and un-annealed
(amorphous) under AFM to verify uniform film coverage

Sample description

thickness*| st dev. |expected # of| expected

) s - e 0 [nm] [nm] periods (n) [lamellar period

. thickness [nm]
target thickness: t; = (n+1/2) L, — > [ 20175 | 244 7.5 26.9
183.30 | 0.61 6.5 28.2
1.6% off target thickness for n = 8.5 still 160.45 | 0.11 5.5 29.2
gave terracing. Missing ~35% of top layer 129.01 | 0.68 4.5 28.7
99.08 1.21 3.5 28.3
S , —> | 7144 2.47 2.5 28.6
Must be within ?nm of target thickness [ aiss o016 e 79
to prevent terracing on top layer. 1578 0.05 0.5 (+7) 306
14.69 0.04 0.5 (+) 29.4
Toluene too volatile for accurate spin- ——> | 14.06 0.06 0.5 28.1
coating. 13.10 0.06 0.5 (-) 26.2

* from single wavelength ellipsometry



Typical AFM results

n=1.5, annealed
n=1.5, annealed (extreme edge of wafer chip)
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Typical X-ray reflectivity results

Modeled Reflectivity
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NEW TDTR DATA FROM Patrick Hopkins



Conclusions
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Proposed Anneal Schedule for in-situ thermoreflectance study

A

L <

T>Topr

> 30 minutes

Temp. T

assembly

<>

> 15 minutes

h<Tg B,y

quenc

A

Polystyrene (PS) ? ~360-370K ~380K
Black = un-annealed sample
. PMMA ?  ~275K-313K  ~406K n/a n/a
Red = previously annealed
18kPS-b- <173K ~473K  513-548K

(assembled) sample 18kPMMA



Can we measure in-plane thermal transport?

PS PMMA

PVD aluminum
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Tuning thermal conductivity of polymers via chain alignment

Polyethylene
Ultradrawn micro and nano-fibers: 120- to 300-fold increase in in K

Polyethylene
MD simulations:

J. Polymer Sci. Pt. B, 37, pp.3359-67 (1999) and Nature Nanotech., 5, pp.251-55 (2010)

Theoretical predictions of k for individual polyethylene chain:
350 W/(m:-K) or even divergent

Nature Nanotech., 5, pp.251-55 (2010) and Phys. Rev. B, 79, pp.144305 (2009)

1D-to-3D transition of phonon heat conduction in polyethylene
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Schematic of ordered vs. disordered films
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Surface Assembly Misunderstanding
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Normalized Intensity

Thermal transport in thin block copolymer films
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6 21 1 21




Normalized Intensity

Normalized Intensity

Thermal transport in thin block copolymer films
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thickness [A]

Better spin-coating solvent

Replacing toluene with PGMEA
(1-methoxy-2-propyl-acetate)

18k-18k PS-b-PMMA in PGMEA spin curve 18k-18k PS-b-PMMA in PGMEA spin curve
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Dilute PGMEA spin curves

18k-18k PS-b-PMMA in PGMEA spin curves

400 4 m n=1.5
=21143x1-1827
e got lucky here
300 - h
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So far only two data points for each concentration (had four thermal oxide chips left)



