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» Spectral imaging

» Multivariate statistical analysis

» Atomic-resolution x-ray microanalysis
* Brighter sources
* Probe correction
« Efficient x-ray detectors

 Future applications
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» A series of complete spectra resolved in

2- or higher dimensions
— Conventional spectral images-2D*
» Demonstrated in 1979 and first product by PGT in 1995
— Tomographic spectral images-3D**
* Direct-FIB**, Metallography

« Computed-Tilt series of spectral images
» Confocal

— Resolved in other dimensions
« Time, process condition, projection, etc.

 As far as MSA is concerned these can all be treated the same

energy

*e.g., P.G. Kotula et al. Microsc. Microanal. 9 (2003) 1-17. @ Sandia

National
**e.g., P.G. Kotula et al. Microsc. Microanal. 12 (2006) 36-48. Lebopsoees
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ﬁhat is Multivariate Statistical Analysis?

« MSA comprises many techniques for factoring spectral
image data into other hopefully more useful forms
« Makes use of high-degree of redundancy in data

— Many observations of similar, noisy spectral or image
features, tens of thousands to billions

— Noisy data can be used to advantage
— Large number of spectral channels, 50-100000+

« Typically used to reduce dimensionality of the data and
filter noise of known structure

« A 128x128 pixel by 1024 channel data set has 1024
dimensions or variables, which can be transformed so as
to represent chemical information...MSA helps find the
correlations

* Results should be fast and readily interpretable

— Seconds for small data sets to at most tens of minuteg=£ars..
the largest data sets. National
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# What are the basic steps of MSA?

 Keenan, M.R., Multivariate analysis of spectral images
composed of count data, in Techniques and applications of
hyperspectral image analysis, H. Grahn and P. Geladi, Editors.
2007, John Wiley & Sons: Chinchester.

» Scale data for non-uniform noise*

— Assumption here-we know the noise structure in these
counting experiments

— Down-weights large variations in intense spectral or image
features which are due to noise
— Rank 1 approximation to the noise
 In the image domain divide by the square-root of the mean image
 In the spectral domain divide by the square-root of the mean spectrum

« Essentially the same answer as maximum likelihood methods with but
far less computational complexity**

* Factor analysis
* Inverse noise scaling

*M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212 Sandia
**M.R. Keenan, J. Vac. Sci. Tech. A 23 [4] (2005) 746-750 @ National

Laboratories
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} Normalizing for noise

Typical x-ray spectrum from STEM-EDS
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#i We have several options in our

multivariate “Toolbox”

nchannels  pfactors * Principal Component Analysis (PCA)
— Factors are orthogonal
— Factors serially maximize variance
— Provides best LS fit to data
é 5 m ol 'S7T — Non-physical constraints
2 P _ Factors are abstract
) cononenie PCA + factor rotation (Varimax)*
— Rotate factors to “simple structure”
« MCR-ALS™
Unfolded Spatial — Arefinement of Rotated PCA
imsap:: g:,loe components — Non-negativity of C and/or S
Analysis goal: Obtain an — Equality, closure and others
easily interpretable — Constraints may not be effective
representation of the data — Bias due to error in variables |
*M.R. Keenan, Surf. Im‘. Anal. 41 (2009) 79-87. @ ﬁgt"iﬂ',’;'a,_
**P.G. Kotula, et al. Microsc. Microanal. 9 (2003) 1-17. Laboratories
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% Spectral- vs. Spatial-Domain

Simplicity: Analysis of CMOS

Planarized CMOS in-situ lift out specimen on a Mo grid
FEI Tecnai Osiris, 200kV FEG with SuperX (0.9sr)

400 x 500 pixels by 4096+channels, 2nm/pixel

>99% sparse (~811M elements = 0, ~7.7M elements >0)

« Butit's important to note the non-zeros are for the most
part randomly distributed

Data acquisition 249 seconds @ 1.5nA or 1.245msec/pixel
~10.6 M total counts

* 43 kcps summed or 11 kcounts/second/spectrometer

« Average of 53 counts per spectrum

Data analysis took 144 seconds on a decent lab
workstation (XP-x64)

Sandia
National
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aw spectrum from the CMOS
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Eigenanalysis of the CMOS Sl data

Osiris3xGoodOstart-outSpatial2xCompCh15.mat
1 0 C T T T T T T

—O— Eigenvalues: sum= 490218303 |1
O 1st non-component point |
—<— Non-component exponential fit ||

9 non-noise factors

Eigenvalue

70

Sorted Eigenvalue Index

Clearly 9 factors automatically resolved above the noise
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Spatial Domain Simplicity’

Often the phase viewpoint

« D =CS'(Goal: Factor raw data into C and S...linear model)

D is an m-pixel x n-channel raw spectral-data matrix
S is an n x p matrix containing the p pure-component spectra shapes

C is an m x p matrix containing their spatial distributions/abundances
« Data is scaled to account for non-uniform (Poisson) noise**
 Number of factors to retain is chosen (Eigenanalysis)

« PCA s performed on the scaled data such the spectral components are orthogonal
and the spatial components are orthonormal

* Rotate the orthonormal spatial components to maximize their mutual simplicity with
the VARIMAX procedure

« Apply the inverse rotation to the spectral components which relaxes orthogonally in
this domain

* Optionally: Impose non-negativity (e.g., via MCR, CLS, etc.)***

« Inversely scale the components for Poisson noise

*M.R. Keenan, Surf. Int. Anal. 41 (2009) 79-87.
**M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212. @ S
*#%P.G. Kotula et al. Microsc. Microanal. 9 (2003) 1-17.

Laboratories



Spatial-Domain Simplicity
Best Spatial ‘Contrast’ (Phases)

Note Cu, Ta-Si, and low-k dielectric not shown
Si

Cyan = Ni-Si
with Pt and As

Yellow = Ti-N
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Ni-silicide contact, MSA shows minor elements

Spatial-Domain Simplicity
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}‘ Spatial-Domain Simplicity
Ni-silicide contact, MSA shows minor elements

Raw versus MSA-processed

Ni-L
Si-K

2.5+~ -

N
I
|

—
)
]
|

Normalized Counts

N
I

15 2 2.5
X-ray Energy [kV] @ ol

Laboratories



\

Spectral Domain Simplicity’

Often the elemental/correlated elemental viewpoint

« D =CST(Goal: Factor raw data into C and S...linear model)

D is an m-pixel x n-channel raw spectral-data matrix
S is an n x p matrix containing the p pure-component spectra shapes

C is an m x p matrix containing their spatial distributions/abundances
« Data is scaled to account for non-uniform (Poisson) noise**
 Number of factors to retain is chosen (Eigenanalysis)

« PCA s performed on the scaled data such the spatial components are orthogonal and
the spectral components are orthonormal

* Rotate the orthonormal spectral components to maximize their mutual simplicity
with the VARIMAX procedure

« Apply the inverse rotation to the spatial components which relaxes orthogonally in
this domain

* Optionally: Impose non-negativity (e.g. via MCR-ALS)***
« Inversely scale the components for Poisson noise

*M.R. Keenan, Surf. Int. Anal. 41 (2009) 79-87.
**M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212. @ S
*#%P.G. Kotula et al. Microsc. Microanal. 9 (2003) 1-17.
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-~ Spectral-Domain Simplicity
Best Spectral or Elemental ‘Contrast’
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X-FEG

tomic resolution x-ray microanalysis

Critical elements for atomic
resolution x-ray microanalysis
High brightness gun

Probe corrector

- Efficient x-ray detector(s)

All of these elements have been
integrated on the FEI Titan
ChemiSTEM-P (200kV)
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#' New Shottky emitter technology

* New Shottky emitter with the brightness of a cold FEG

« FEI X-FEG brightness increased to ~ 108 A/sr/m?/ V
«~2 x 10° A/lcm?/sr @ 200 kV

* Probe current (w/o corrector)
* 0.5 nAin 0.3 nm diameter
 Increased by 5x relative to regular Schottky FEG

* Probe current (with DCOR probe corrector)
« 200 kV, 1.3 nAin 0.2 nm diameter probe
* 80 kV, 0.5 nAin 0.2 nm diameter probe

* Energy-spread = 0.9 eV

Sandia
National
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2005 pnSensor/Roentec

4-5t generation
Figure 2. The Ketak 12-lerment saradar 500 clip movatid i conventional
el ————— (40 mm2, 0.06 sr)

i the canber of the chip.

2005 Ketech/Custom imp.

2nd_3rd generation annular 2007 pnSensor/Bruker
(1.1 sr)

5t generation annular at
2

B. L. Doyle, D. S. Walsh, P. G. Kotula, P. Rossi, T. Schiilein and M. Rohde, “An  ONL(60 mm?, 1.1 sr)

annular Si drift detector uPIXE system using AXSIA analysis,” X-Ray Spectrom.

(2005) 34
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5th generation SDD performance

SEM data from 4-detectors summed
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}'Silicon drift detector in AEM provides

more flexible integration
FEI/Bruker/pnSensor...SuperX™

Field of the objective lens keeps
electrons from hitting sensors

PNSensor
SDD (4x)

Revolutionary
changes in AEM-EDS

|

User
Interface

Liquid N,
dewar

SDDs cooled by the cold finger.
Cooler than needed but no Peltier.

Vacuum feed
through

Lower pole

Figure 1. Schematic of Super-X detector

4-30mm? (120mm?) SDDs with large solid angle
* 0.9 sr (Osiris-uncorrected)
0.7 sr (Titan-probe corrected)
« State-of-the-art SDDs
* Windowless & pnWindow...good light-
element performance (C, N, O previously)
 High-throughput...10 usec instantaneous
dwell times, multiple pass, drift correction




FEI/Bruker/pnSensor...SuperX™
Detector Performance
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In both experiments the same FIB-cut InP sample was used with a thickness of about 200 nm.

Sandia
National
Laboratories



Example: SrTiO3 [100]

MSA-processed spectral image of SrTiO; with no a priori information
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xample: Y, Ti,O7 Pyrochlore [011]

128x128 Spectral image, 4x compression, Spectral domain simplicity

Normalized Counts
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Example: GaAs [110]

No MSA applied here

Raw images K-lines filtered images O(iff nm
o0 O
@O
@0 O
QO
o O

64 x 64 pixel @ 2 @-Ga
200 pA beam current
917 sec total time
220 msec/pixel

Titan G2 @200 kV
probe-corrected (DCOR) @ Sandia

National
X-FEG, SuperX aboratories



Example: GaAs [110]

MSA applied here with no a priori information

Raw maps

~413k counts in the spectral image
Max counts in any channel is 10
Average of 100 counts per spectrum
MSA analysis took 300 msec with
AXSIA

MSA results, K and L line0.14 nm

64 x 64 pixel
247 pA beam current
68 sec total time
17 msec/ pixel

Titan G2 @200 kV
probe-corrected (DCOR)
X-FEG, SuperX

—
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5 GaAs [110]: MSA component overlay

3
mpression
2.5 ain simplicity
vity constraint)
L 2
c
>
3
© 15
)
N
g 1
)
Z
0.5
0
05 2 4 6 8 10 12 ) i
X-ray Energy [kV] Laboratories



,V «nographic Spectral Imaging and

Multivariate Statistical Analysis

- Projections Advanced statistical analysis
oeam XYiPp XV iPqe - _ :
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Unfolded data matrix

‘Component images and spectra’

Reconstruction of component

images into 3D model (Inspect 3D)
Renderin /LQ

Tip of the Fischione
Model 2050 on-axis SEM image of the
tomography holder Atom-probe tip prepared needle
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%’ MSA of the entire

projection series
FEI Tecnai F30-ST, 0.1sr

Color overlays of component images
Region of spectral
images 2000nm x 400nm

Drift-correction region

N
el =

b g
£
19 hours (over 3 days) of data acquisition © * M:-K
“os ! Xray Enmergy [kV] 15 z
P.G. Kotula, et al. Microsc. Microanal. 13
(Suppl2), 2007 1324CD-1325CD
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Reconstructed isosurface of the
alumina particles

@ Sandia
National
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% Conclusions

« AEM is undergoing a renaissance with correctors, SDDs,
novel diffraction techniques, and better sources.

« Atomic resolution EDS will become more common than
EELS. More elements accessible, esp. heavy ones.

* Novel detector geometries for AEM improve sensitivity and
throughput.

« MSA methods are very useful for simplifying the analysis of
large, complex data sets

— Importance of Poisson normalization
— Factor rotation, spatially or spectrally simple viewpoints

— Unbiased analysis powerful for materials science, etc. Needle in the
haystack....single atoms....

* Quantitative analysis pushed to smaller volumes
— Understanding the spectrum is critical...every bump matters!
— Potential for 1000 ppm sensitivity at 0.2 nm?
— 100 ppm sensitivity at 1 nm? @ Sandia

« Practical computed tomographic spectral imaging o

Laboratories
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