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} Computational Modeling

Issue In simulation-based optimization:
Uncertainty in the computational model

®

et

Understanding uncertainty: Optimization
can play a significant role.
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} Challenges of Simulation

» Is the simulation correctly solving the underlying
equations? (verification)

»» Are the physical phenomena being modeled
correctly? (validation)

< Can errors be identified? (uncertainty quantification
& data analysis)

<+ How can inaccuracies be quantified? (metrics)

» What inherent model parameters should be used?
(model calibration)
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urrent) Validation Analysis Process

Compute
»»| Validation
Metrics

Compute
Margin
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}- (Goal) Validation Analysis Process

Compute
»»| Validation
Metrics

Compute
Margin

Calibration and UQ
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}‘ Pairing Calibration & UQ

“» A combined approach doesn’t just give the
optimized model parameters, but also includes
information to help assess their quality.

< In validation environments, calibration errors
must be understood and should be minimized.

“* The overall system error in the simulator is
often not well understood.
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# Use of Surrogates in Optimization

< Surrogates (aka response surface models, low fidelity
models, metamodels, emulators)

€ Estimate true function behavior as close as possible
¢ Computationally cheaper

< Surrogate-based optimization utilizes a surrogate in the
case of computationally expensive objective
functions(See for example Forrester & Keane)
< Many techniques for creating surrogates:
® Math/stats: Kriging, Gaussian Process, etc.
€ Software options: mesh, model descriptors

<+ Common approach: Optimize on surrogate using
periodic corrections from the true model
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#mg Surrogates to Estimate Sensitivities

< Explore the design space to understand the global
behavior of the entire system.

¢ Different goal that that of traditional optimization

¢ Way to include behavior requirements without explicit
constraints

Error in the surrogate estimation must be considered

< Bayesian models provide a coherent mechanism for
propagating and combining uncertainty

+ Examine uncertainty using sensitivity analysis
¢® How do code outputs vary due to changes in code inputs?

€ Local sensitivity: code output gradient (derivative) data for a
specific set (or sets) of code input parameter values

® Global sensitivity: the general trends of the code outputs over
the full range of code input parameter values (linear, quadratic,

etc.) Sandia
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-4 “QUAC Framework (Simultaneous
' uantification of Uncertainty and Calibration)
\ Sler;ri::)]:e /
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Surrogate Model| <

Select Points for
Refinement
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} SQUAC Run

Initial points selected via LHS
Build the surrogate using TGP
EGO point(s) determined at each iteration

Local optimization routine initiated at every j-th
iteration

+ After convergence, all intermediate optimization
iterates added to the GP model
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} SQUAC Run

Initial points selected via LHS
Build the surrogate using TGP
EGO point(s) determined at each iteration

Local optimization routine initiated at every j-th
iteration

+ After convergence, all intermediate optimization
iterates added to the GP model
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“* NOTE: Many algorithm inherent “knobs” that need to
be investigated

L)

Sandia
SAND2013-XXXXC st B



r"
P 4 %P: Treed Gaussian
Process

“* Non-stationary modeling
method that couples
stationary Gaussian
processes with treed
partitioning

< Open source R package,
available from the CRAN,
L-GPL license
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,p' ACRO

“ Supports a variety of optimization capabilities

© © & & ¢

) 4

A 4

Linear programming

Mixed-integer linear programming

A rigorous nonlinear global optimization solver
Derivative-free local search

Stochastic global optimization methods: multistart local
search, evolutionary algorithms

Parallel branch-and-bound
Bound-constrained derivative-based local optimization

»» Open source, BSD license
% Available via DAKOTA

Siirola, Hart ACI'O\
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# Application Example #1

** Problem: Appropriate design of a bipolar junction
transistor (BJT)

* Question: Given certain design variables, does the
simulation of the BJT response over time match the
experimental response?

< Model/Simulator: Xyce

*» Variables: 3 continuous
€® 1.65=<var1=1.95
€® 1.82e-4 <var2 £1.98e-4
¢ 2.04e-04 < var3 < 2.25¢-4
< Optimization Objective: Least Squares difference
between simulation and experimental data
Paskaleva, Castro, Hembree

Sandia
SAND2013-XXXXC gl



\

Results

Total Wall Clock Time: ~25 hours
Number of Function Evaluations: 446
* Results:

_ varl __ [Var2’ed _ |Var3*ed

\/
0‘0
\/
0‘0

Lower Bd (defined) 1.65 1.82 2.04
Upper Bd (defined) 1.95 1.98 2.25
Pt w/ Best SD 1.8993759033 1.9548180998 2.1102588309

Pt w/ Best Conf. Bd 1.7492615770 1.9489892813 2.1855684542
Classical Opt Soln 1.8389242337 1.9567873122 2.1567230281
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# Application Example #2

** Problem: Appropriate selection of model parameter
values of a heterojunction bipolar transistor (HBT)

* Question to answer: Given design variables, does the
simulation of the HBT response to a stimulus over time
match the response of reference data?

“* Model/Simulator tool: Xyce
“» Variables: 2 continuous

v 0.55uas2.00

v 01=<ub=s1.50

< Optimization Objective: Least Squares difference
between simulation and reference data
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HBT | Optimal Solution | Optimal Solution

oo O A W DN

Results

1.0661743908
9.0766844773e-01

1.0973663353
6.6957300437¢e-01

9.5057394851
7.9797247646e-01

1.1633999400
7.5076774351e-01

1.1764720238
7.5927475756e-01

1.0599146094
7.9311727991e-01
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1.0738527468
9.1629941073e-01

1.1306264350
5.9615848134e-01

9.3547443903e-01
8.6885081985e-01

1.1306264350
8.2046881137e-01

1.1519550300
8.5096085321e-01

1.0738527468
7.7253641788e-01

#Fn #Fn
TGP0 | MOGA
506 219
193 213
193 215
682 219
633 264
222 269

3.15
1.5
1.49
3.94
3.76
1.63

SQFIT
TGP
(10e-03)

3.424
3.608
5.439
3.396
3.693
5.752

SQFIT
MOGA
(10e-03)

5.487

5.948
8.49
7.146
5.145
6.406
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HBT 1
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HBT2

TGP

MOGA
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Simulation 2
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HBT3
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HBT4
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HBT6
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}- What’s Next

*» Test alternatives in the framework
% Optimization methods
» Sampling methods
» Surrogate modeling approaches
“ Expected improvement functions

< Include optimization on the surrogate
< Apply to multi-objective problems
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