
Using Surrogates to Calculate Sensitivities and Improve Optimization-Based Calibration Routines

Genetha Gray

Sandia National Labs, Livermore, CA

John Siirola, Biliana Paskaleva

Sandia National Labs, Albuquerque, NM

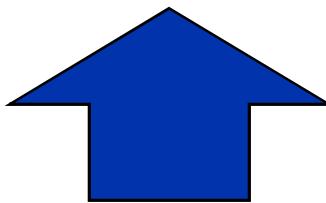
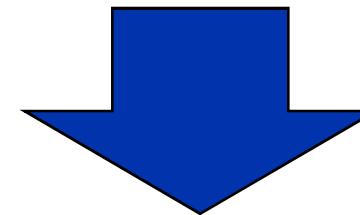
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Agency under contract DE-AC04-94AL85000.

Outline

- 1. Calibration**
- 2. Surrogates**
 1. Traditional role in optimization
 2. Assisting with uncertainty issues
- 3. The algorithm**
- 4. Some examples**
- 5. Ongoing & future work**

Computational Modeling

**Issue in simulation-based optimization:
Uncertainty in the computational model**

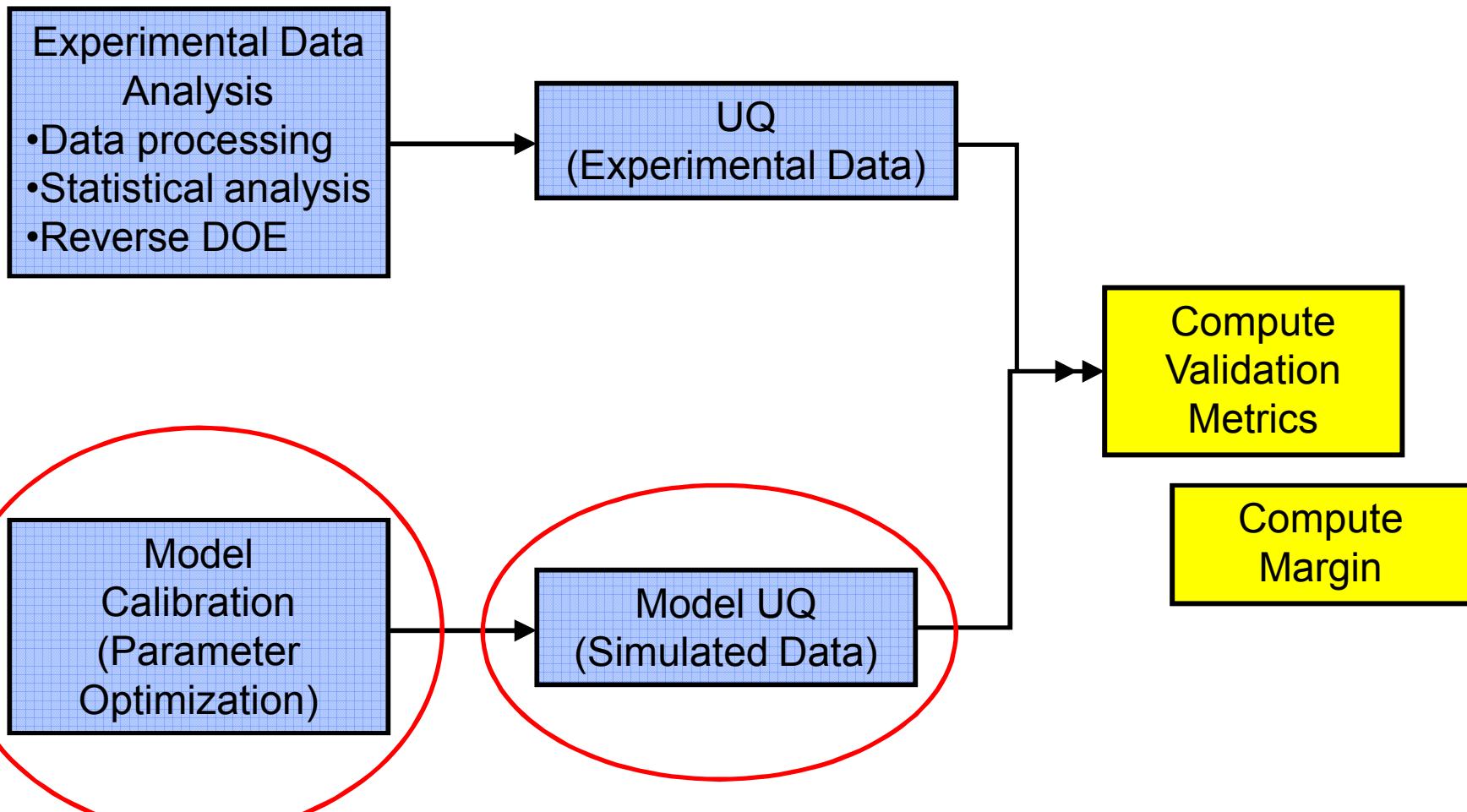


**Understanding uncertainty: Optimization
can play a significant role.**

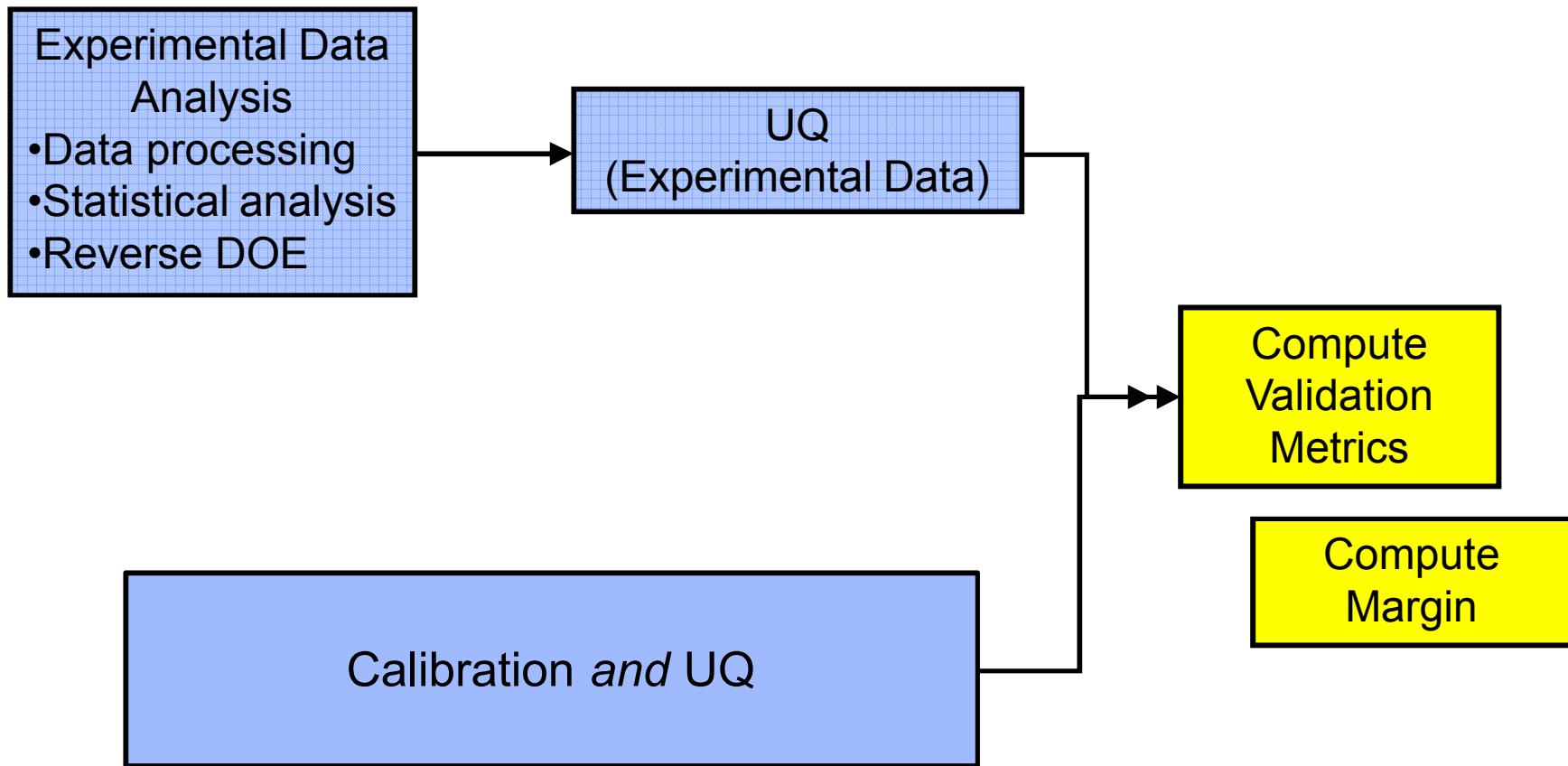
Challenges of Simulation

- ❖ Is the simulation correctly solving the underlying equations? **(verification)**
- ❖ Are the physical phenomena being modeled correctly? **(validation)**
- ❖ Can errors be identified? **(uncertainty quantification & data analysis)**
- ❖ How can inaccuracies be quantified? **(metrics)**
- ❖ What inherent model parameters should be used? **(model calibration)**

(Current) Validation Analysis Process



(Goal) Validation Analysis Process



Pairing Calibration & UQ

- ❖ A combined approach doesn't just give the optimized model parameters, but also includes information to help assess their quality.
- ❖ In validation environments, calibration errors must be understood and should be minimized.
- ❖ The overall system error in the simulator is often not well understood.

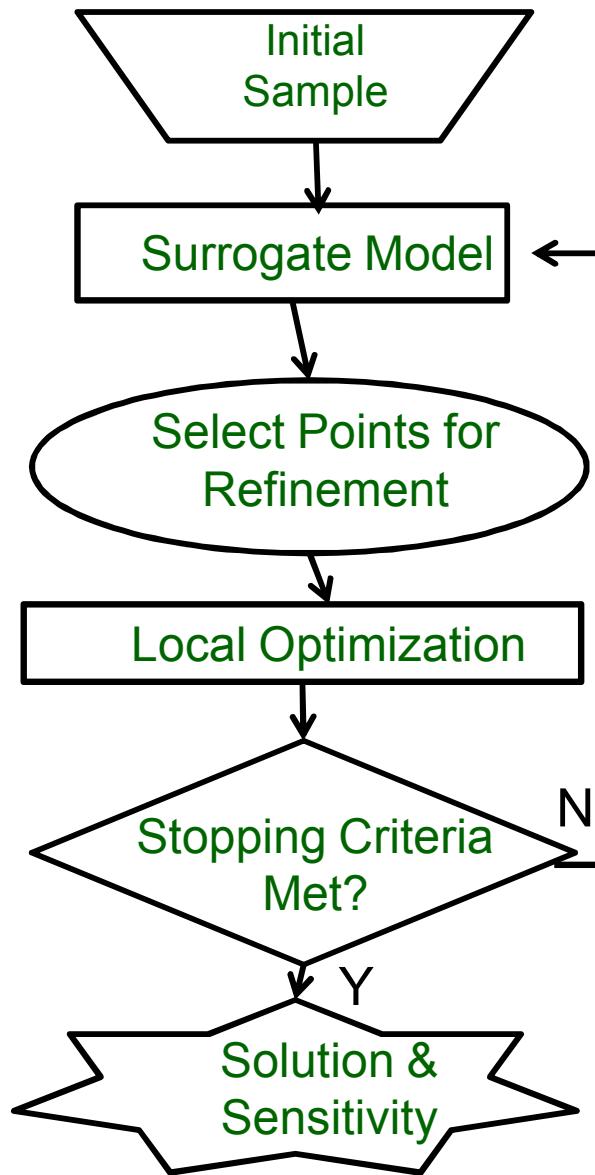
Use of Surrogates in Optimization

- ❖ Surrogates (aka response surface models, low fidelity models, metamodels, emulators)
 - ◆ Estimate true function behavior as close as possible
 - ◆ Computationally cheaper
- ❖ Surrogate-based optimization utilizes a surrogate in the case of computationally expensive objective functions(See for example Forrester & Keane)
- ❖ Many techniques for creating surrogates:
 - ◆ Math/stats: Kriging, Gaussian Process, etc.
 - ◆ Software options: mesh, model descriptors
- ❖ Common approach: Optimize on surrogate using periodic corrections from the true model

Using Surrogates to Estimate Sensitivities

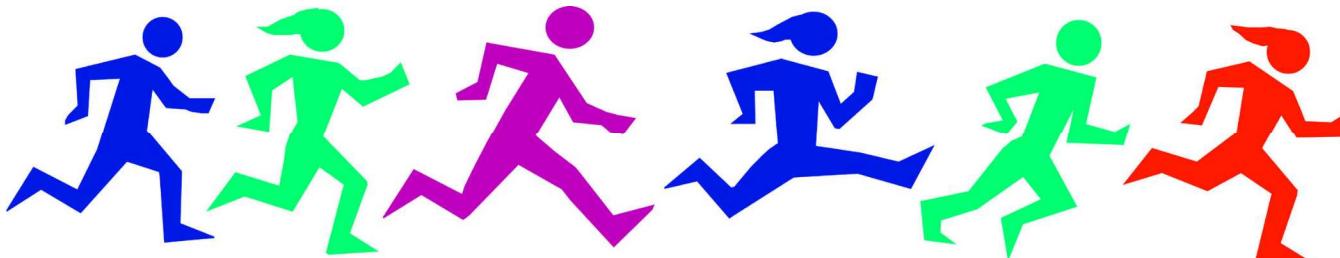
- ❖ Explore the design space to understand the global behavior of the entire system.
 - ◆ Different goal than that of traditional optimization
 - ◆ Way to include behavior requirements without explicit constraints
- ❖ Error in the surrogate estimation must be considered
- ❖ Bayesian models provide a coherent mechanism for propagating and combining uncertainty
- ❖ Examine uncertainty using sensitivity analysis
 - ◆ How do code outputs vary due to changes in code inputs?
 - ◆ **Local sensitivity**: code output gradient (derivative) data for a specific set (or sets) of code input parameter values
 - ◆ **Global sensitivity**: the general trends of the code outputs over the full range of code input parameter values (linear, quadratic, etc.)

SQUAC Framework (Simultaneous Quantification of Uncertainty and Calibration)



SQUAC Run

- ❖ Initial points selected via LHS
- ❖ Build the surrogate using TGP
- ❖ EGO point(s) determined at each iteration
- ❖ Local optimization routine initiated at every j -th iteration
- ❖ After convergence, all intermediate optimization iterates added to the GP model

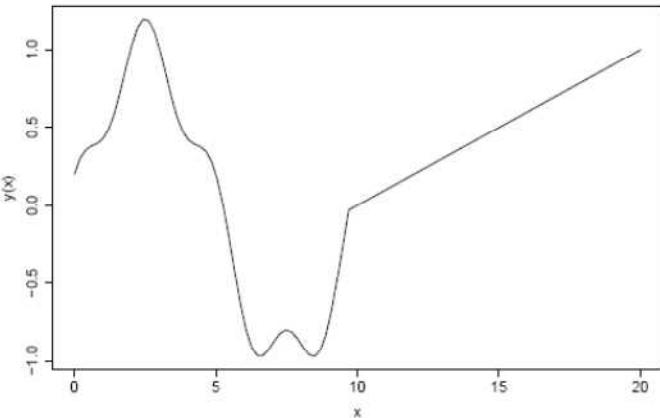
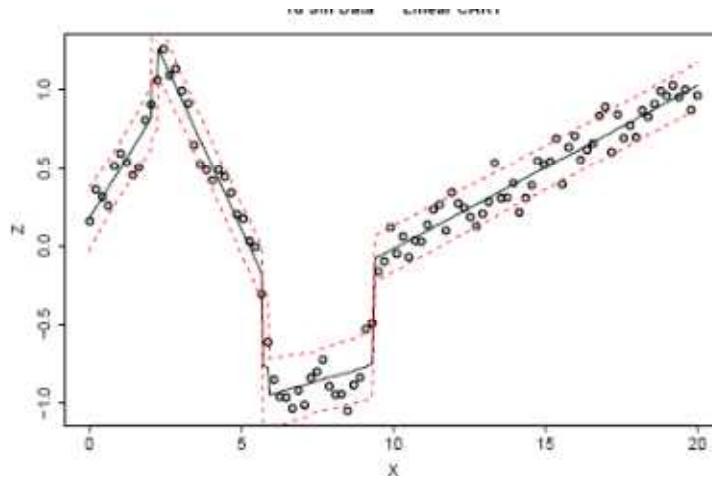
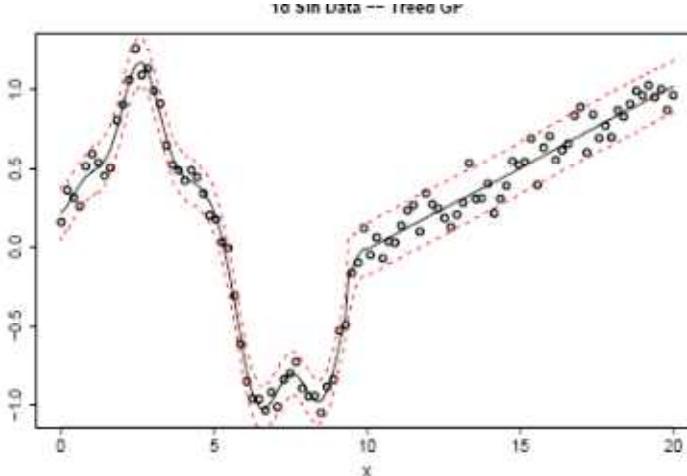


SQUAC Run

- ❖ Initial **points** selected via **LHS**
- ❖ Build the surrogate using **TGP**
- ❖ **EGO** point(s) determined at each iteration
- ❖ Local optimization **routine** initiated at every **j-th** iteration
- ❖ After **convergence**, all intermediate optimization iterates added to the **GP** model
- ❖ **NOTE:** Many algorithm inherent “**knobs**” that need to be investigated

TGP: Treed Gaussian Process

- ❖ Non-stationary modeling method that couples stationary Gaussian processes with treed partitioning
- ❖ Open source R package, available from the CRAN, L-GPL license



Gramacy, Taddy, Lee

ACRO

- ❖ Supports a variety of optimization capabilities
 - ◆ Linear programming
 - ◆ Mixed-integer linear programming
 - ◆ A rigorous nonlinear global optimization solver
 - ◆ Derivative-free local search
 - ◆ Stochastic global optimization methods: multistart local search, evolutionary algorithms
 - ◆ Parallel branch-and-bound
 - ◆ Bound-constrained derivative-based local optimization
- ❖ Open source, BSD license
- ❖ Available via DAKOTA

Siirola, Hart

Application Example #1

- ❖ **Problem:** Appropriate design of a bipolar junction transistor (BJT)
- ❖ **Question:** Given certain design variables, does the simulation of the BJT response over time match the experimental response?
- ❖ **Model/Simulator:** Xyce
- ❖ **Variables:** 3 continuous
 - ◆ $1.65 \leq \text{var1} \leq 1.95$
 - ◆ $1.82\text{e-}4 \leq \text{var2} \leq 1.98\text{e-}4$
 - ◆ $2.04\text{e-}04 \leq \text{var3} \leq 2.25\text{e-}4$
- ❖ **Optimization Objective:** Least Squares difference between simulation and experimental data

Paskaleva, Castro, Hembree

Results

- ❖ **Total Wall Clock Time: ~25 hours**
- ❖ **Number of Function Evaluations: 446**
- ❖ **Results:**

	Var1	Var2 * e-4	Var3 * e-4
Lower Bd (defined)	1.65	1.82	2.04
Upper Bd (defined)	1.95	1.98	2.25
Pt w/ Best SD	1.8993759033	1.9548180998	2.1102588309
Pt w/ Best Conf. Bd	1.7492615770	1.9489892813	2.1855684542
Classical Opt Soln	1.8389242337	1.9567873122	2.1567230281

Application Example #2

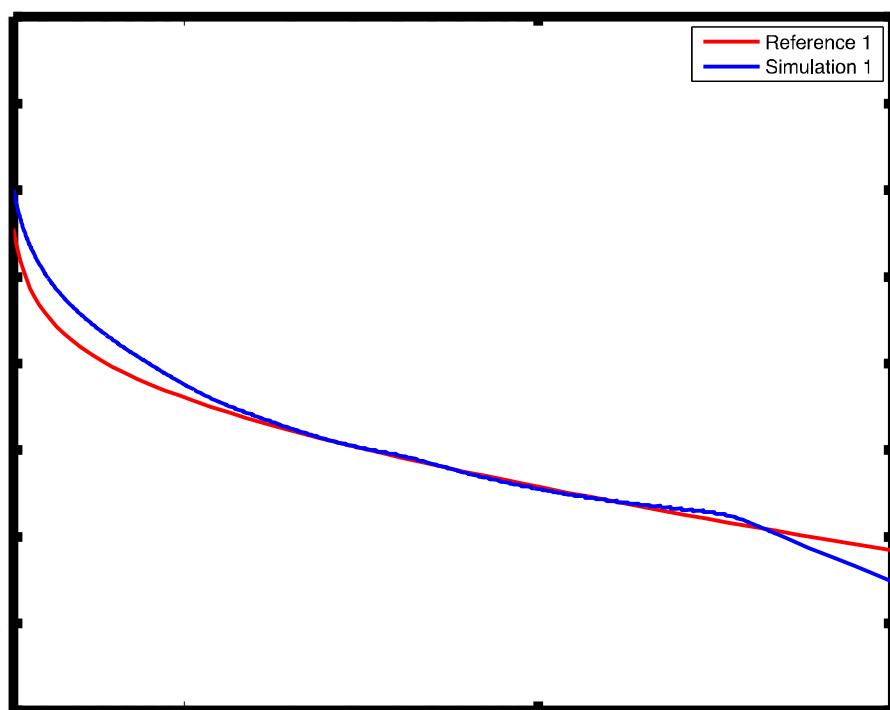
- ❖ **Problem: Appropriate selection of model parameter values of a heterojunction bipolar transistor (HBT)**
- ❖ **Question to answer: Given design variables, does the simulation of the HBT response to a stimulus over time match the response of reference data?**
- ❖ **Model/Simulator tool: Xyce**
- ❖ **Variables: 2 continuous**
 - ✓ $0.5 \leq u_a \leq 2.00$
 - ✓ $0.1 \leq u_b \leq 1.50$
- ❖ **Optimization Objective: Least Squares difference between simulation and reference data**

Results

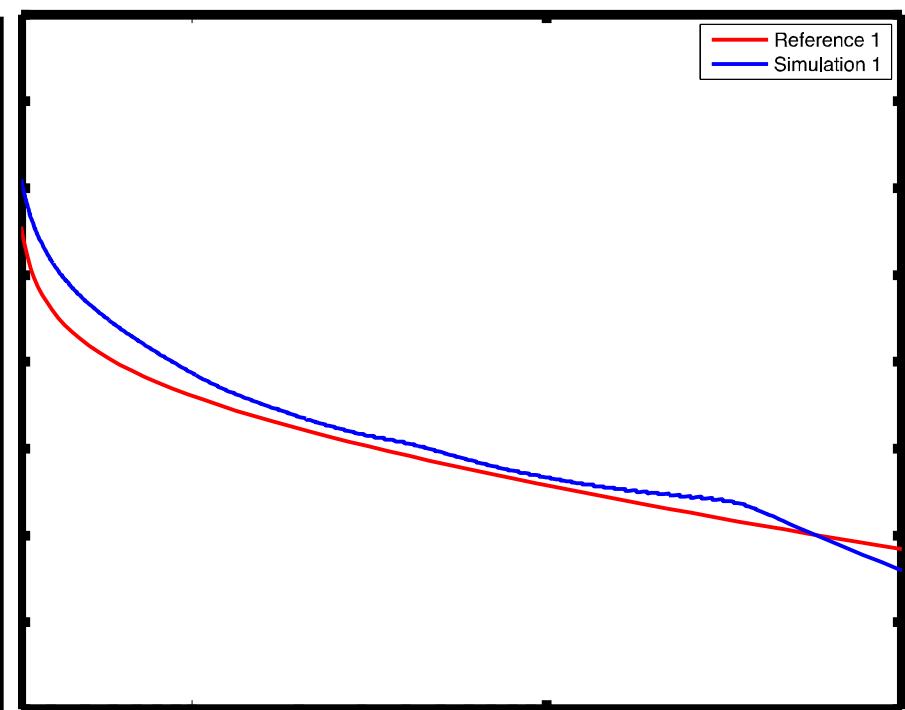
HBT Device	Optimal Solution TGPO	Optimal Solution MOGA	# Fn Evals TGPO	#Fn Evals MOGA	Total Time (Hrs)	SQFIT TGP (10e-03)	SQFIT MOGA (10e-03)
1	1.0661743908 9.0766844773e-01	1.0738527468 9.1629941073e-01	506	219	3.15	3.424	5.487
2	1.0973663353 6.6957300437e-01	1.1306264350 5.9615848134e-01	193	213	1.5	3.608	5.948
3	9.5057394851 7.9797247646e-01	9.3547443903e-01 8.6885081985e-01	193	215	1.49	5.439	8.49
4	1.1633999400 7.5076774351e-01	1.1306264350 8.2046881137e-01	682	219	3.94	3.396	7.146
5	1.1764720238 7.5927475756e-01	1.1519550300 8.5096085321e-01	633	264	3.76	3.693	5.145
6	1.0599146094 7.9311727991e-01	1.0738527468 7.7253641788e-01	222	269	1.63	5.752	6.406

HBT 1

TGP

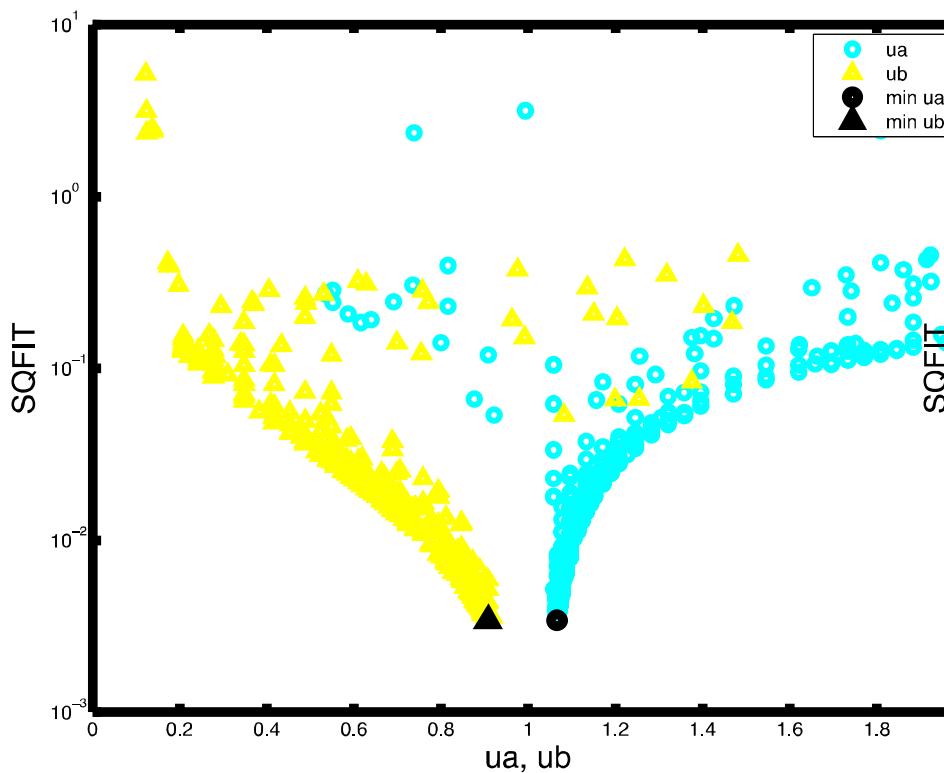


MOGA

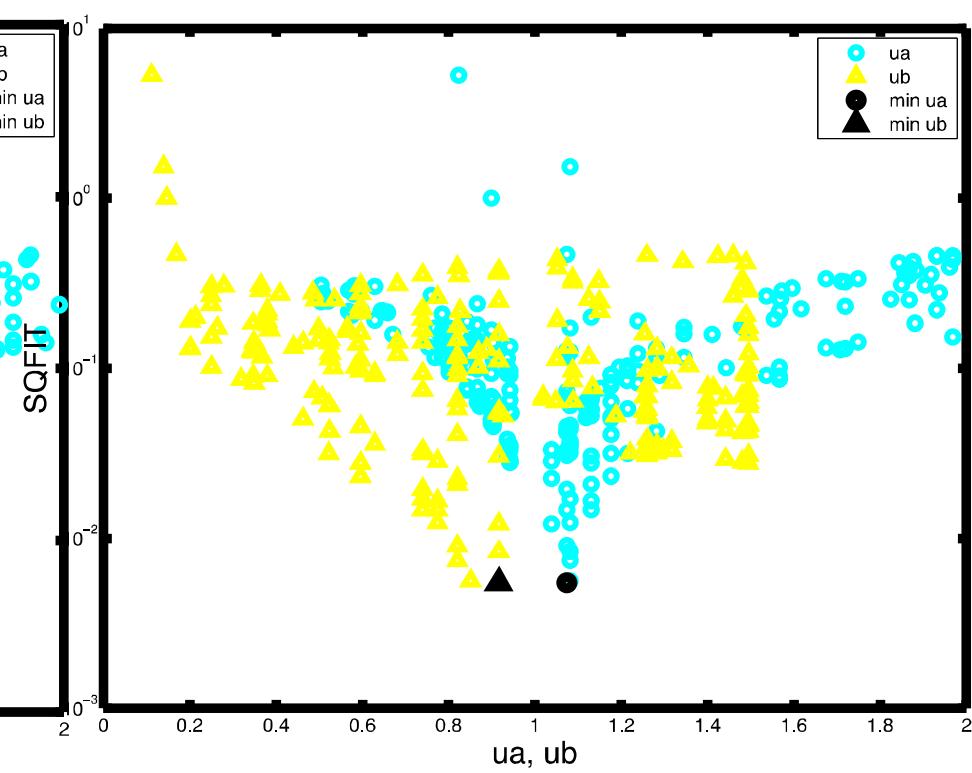


HBT 1

TGP

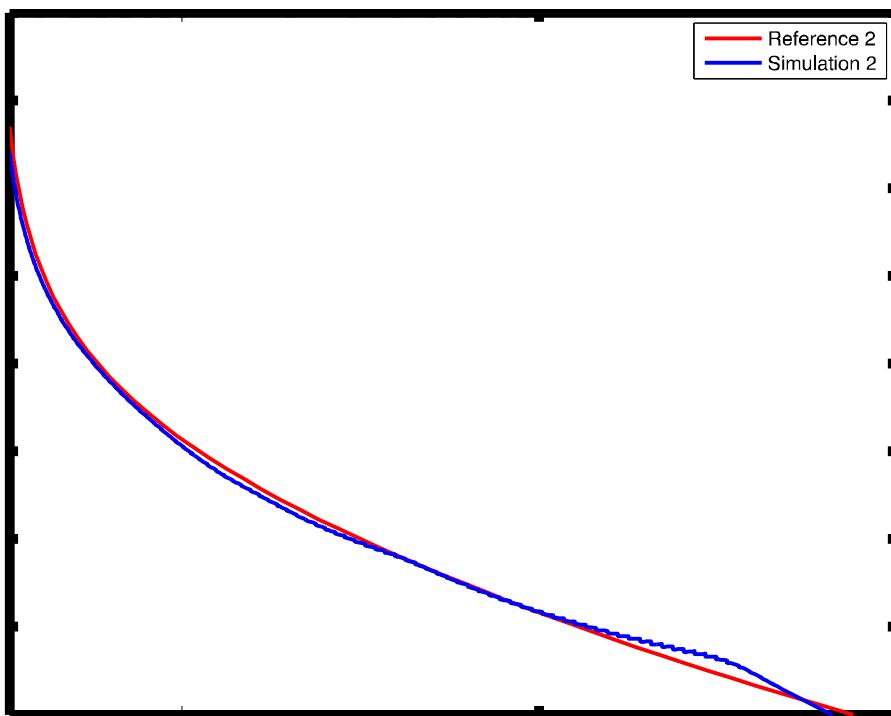


MOGA

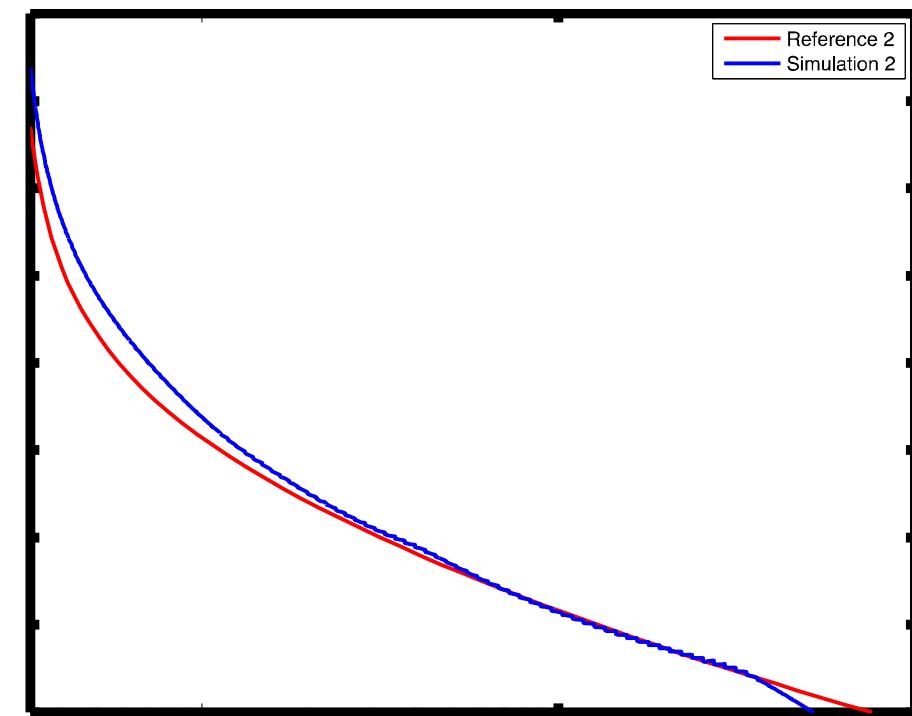


HBT2

TGP

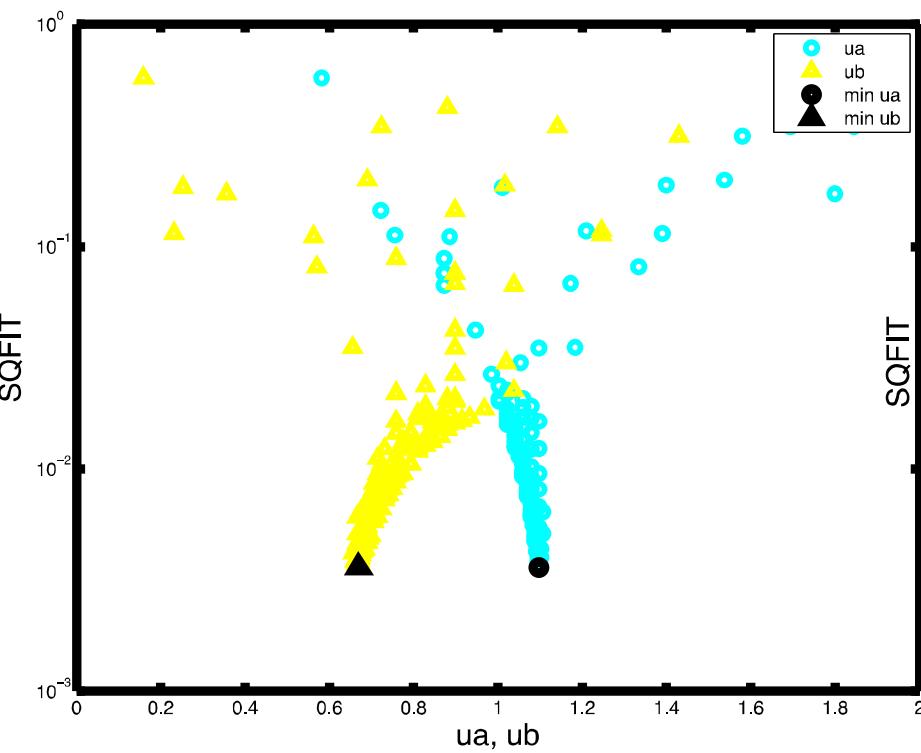


MOGA

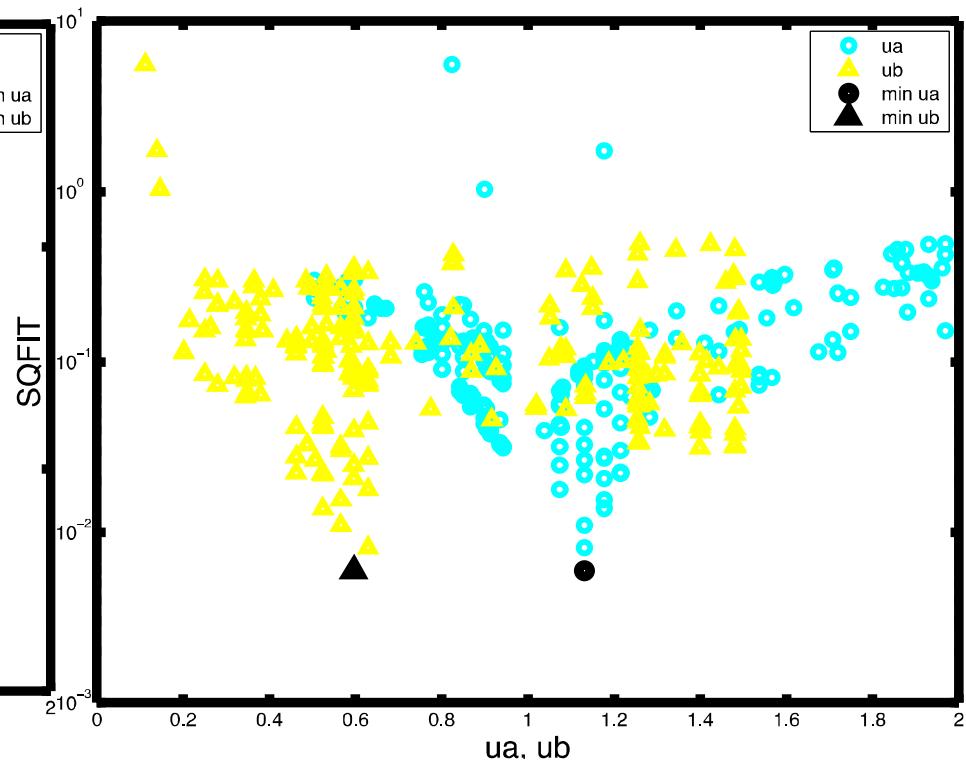


HBT2

TGP

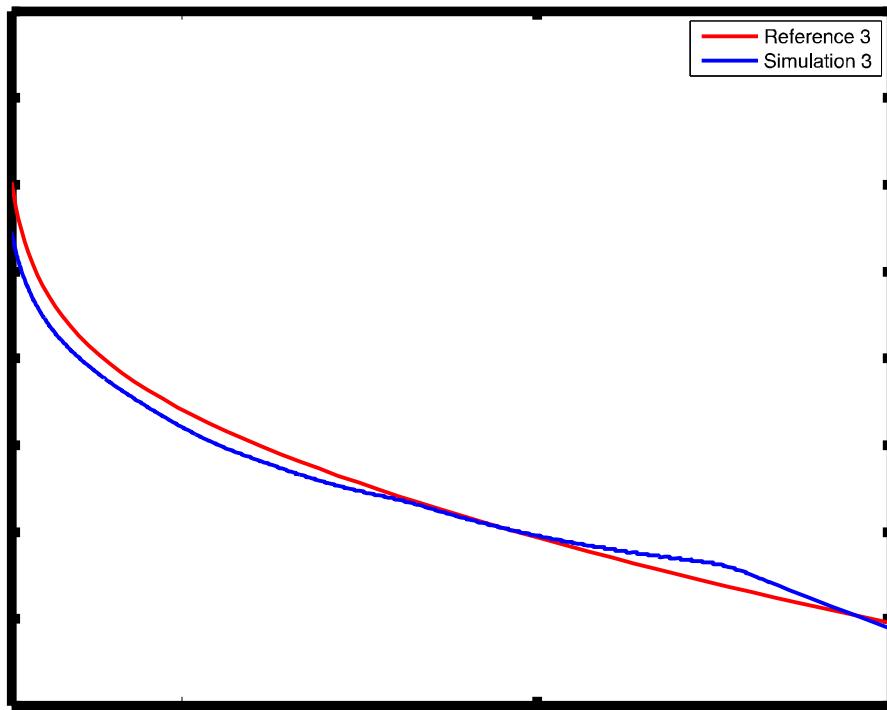


MOGA

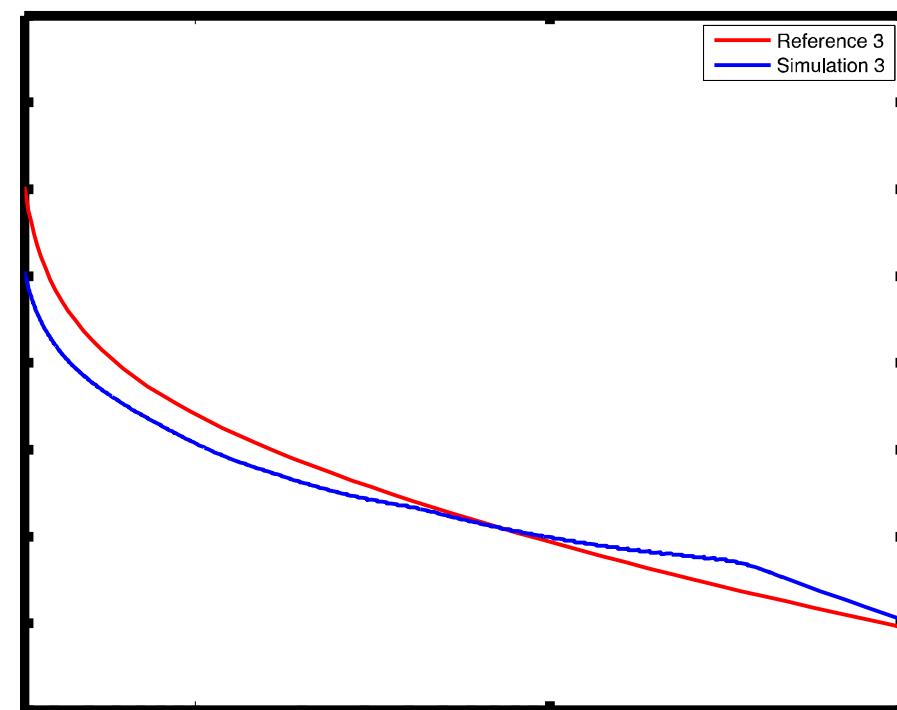


HBT3

TGP

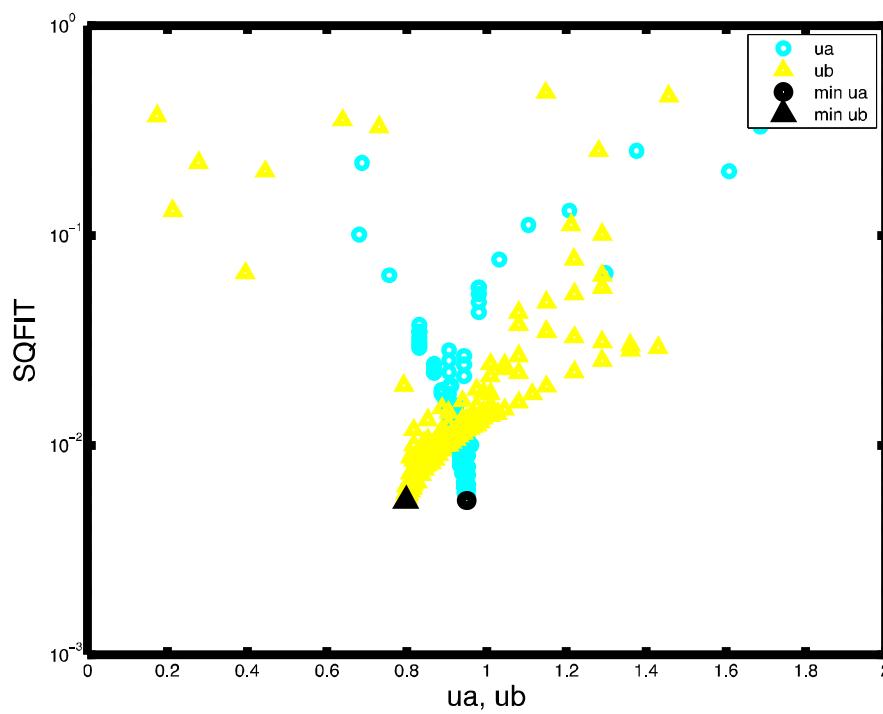


MOGA

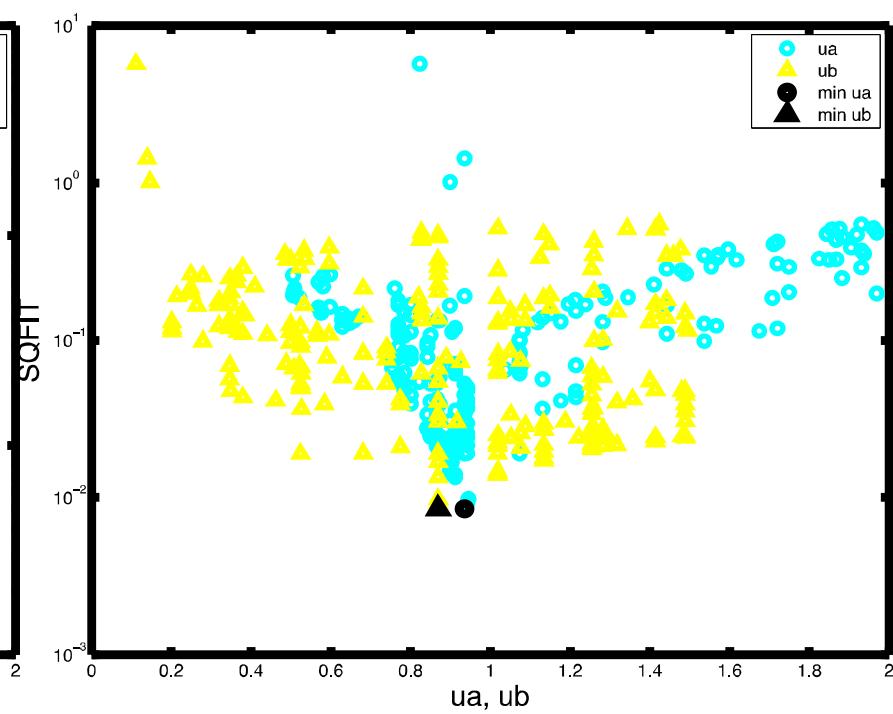


HBT3

TGP

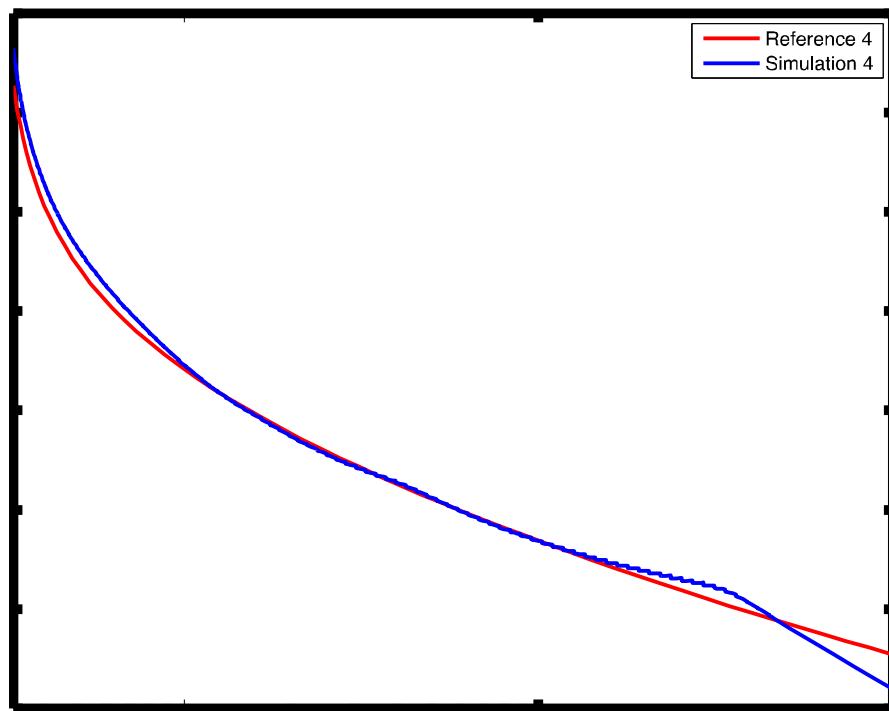


MOGA

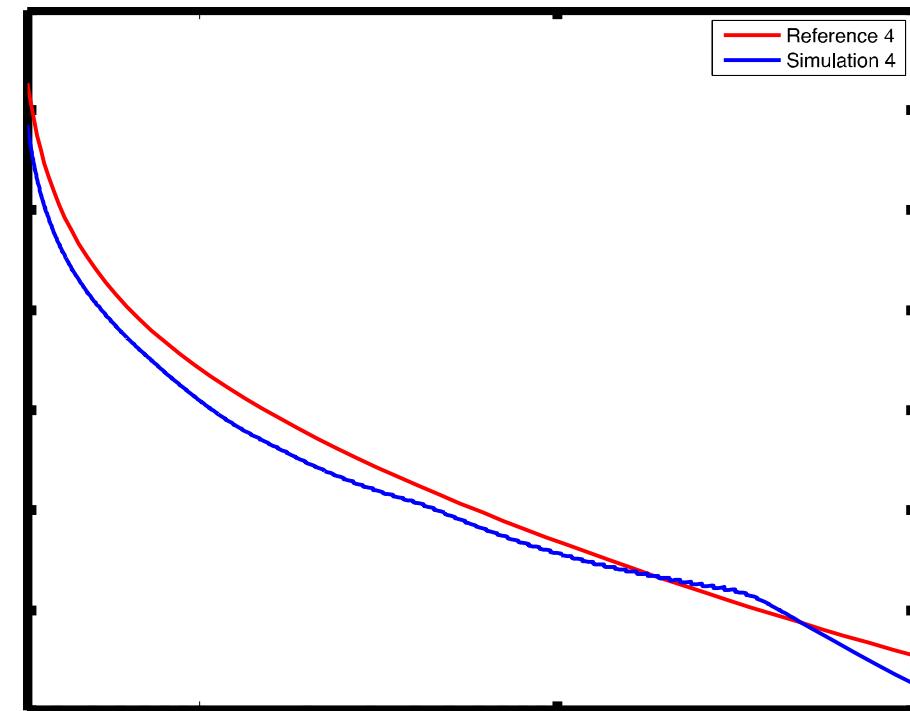


HBT4

TGP

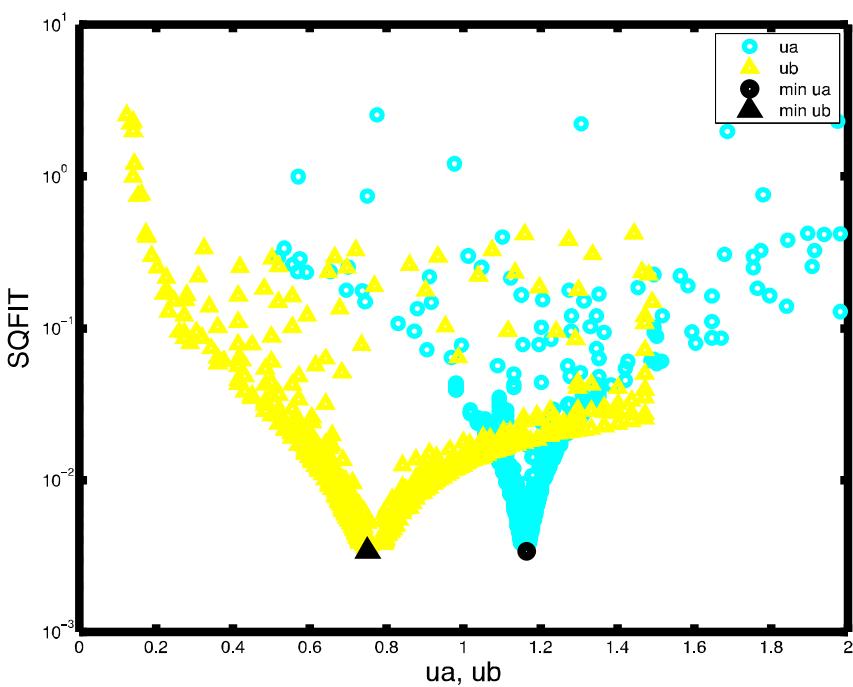


MOGA

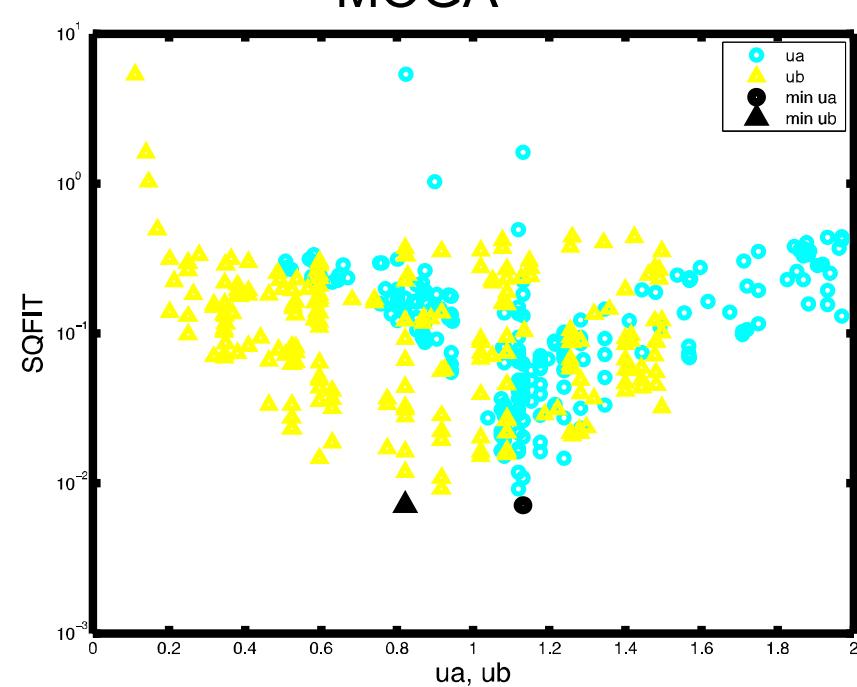


HBT4

TGP

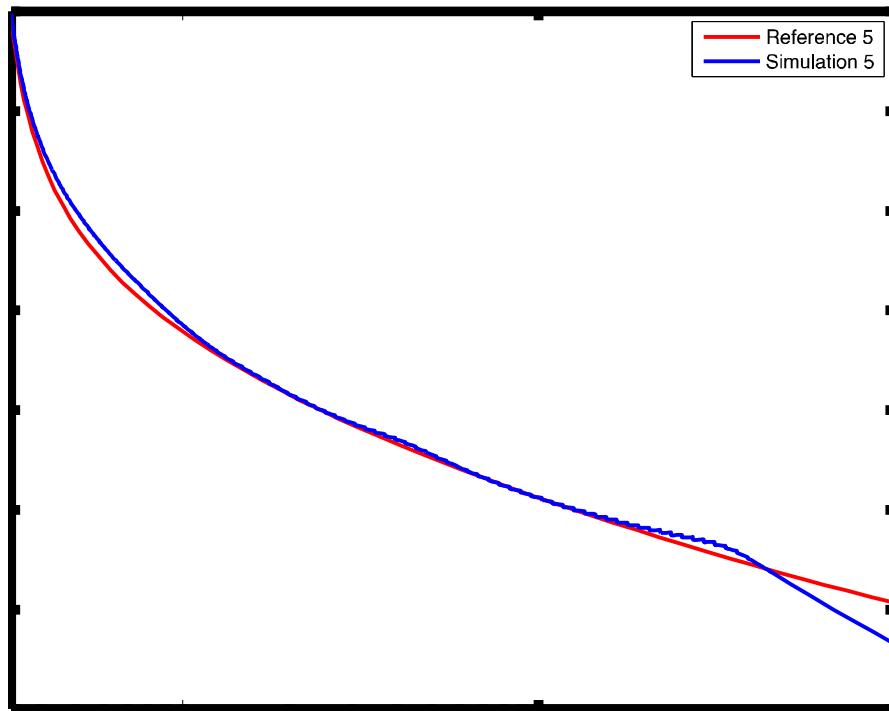


MOGA

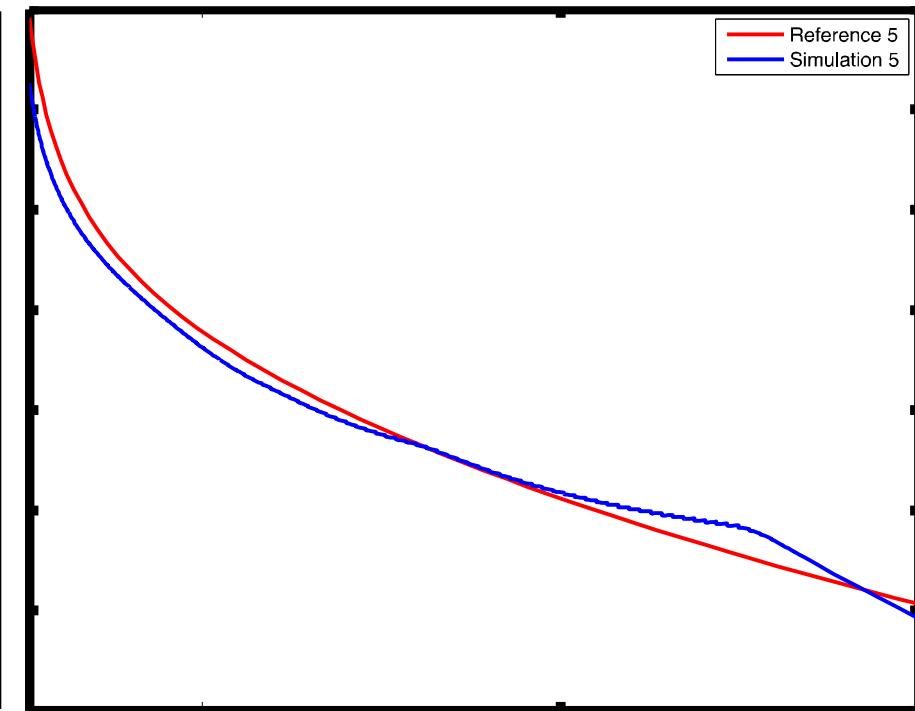


HBT5

TGP

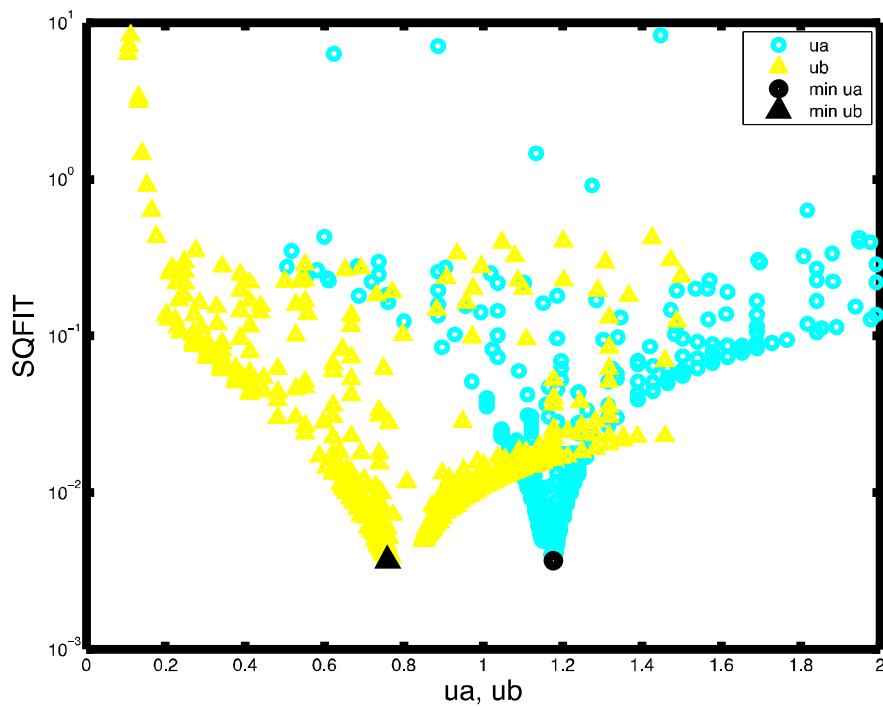


MOGA

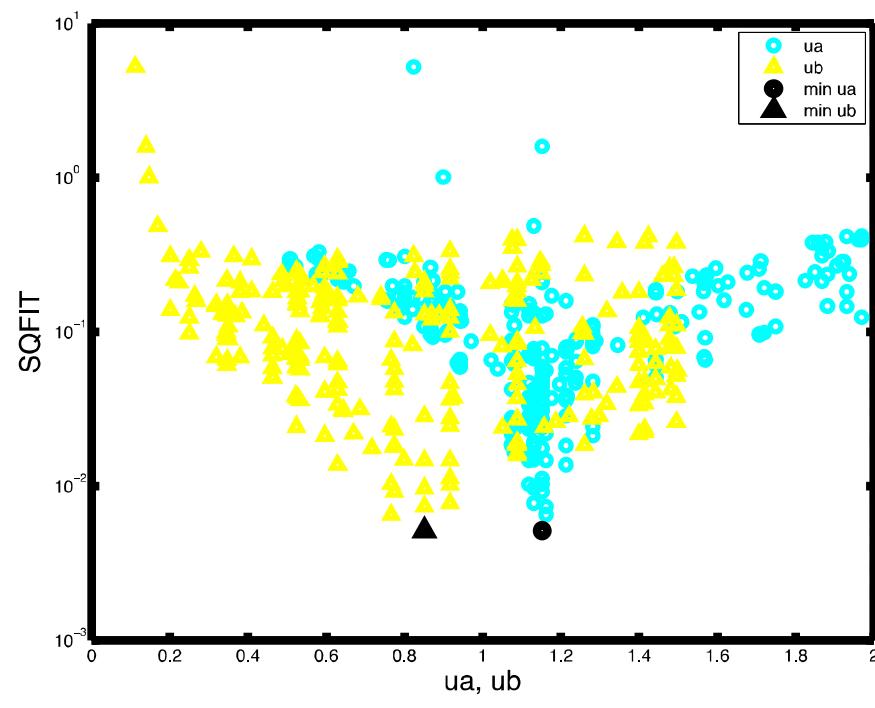


HBT5

TGP

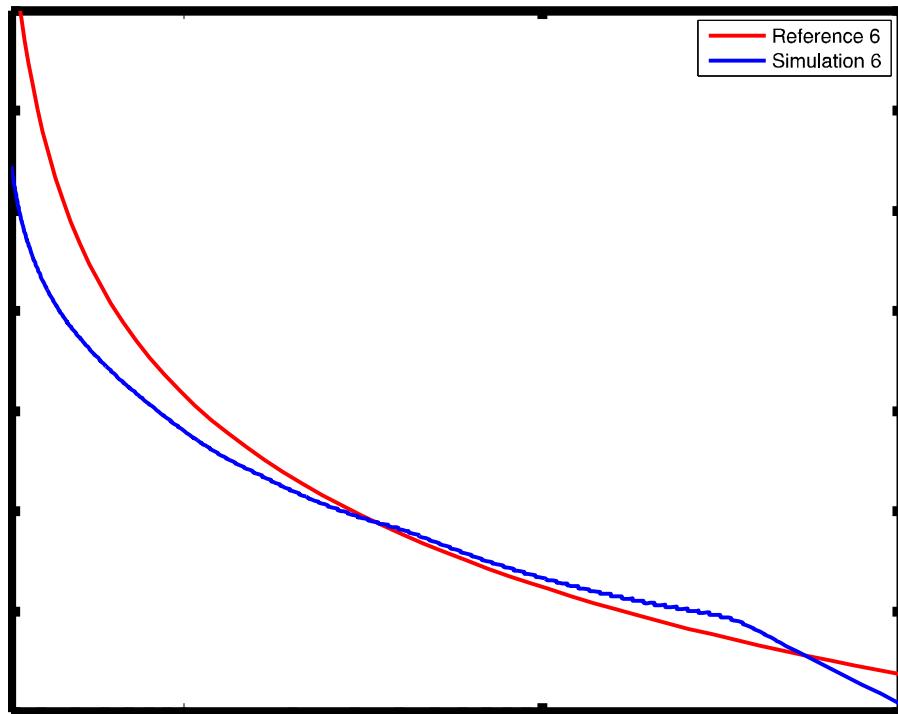


MOGA

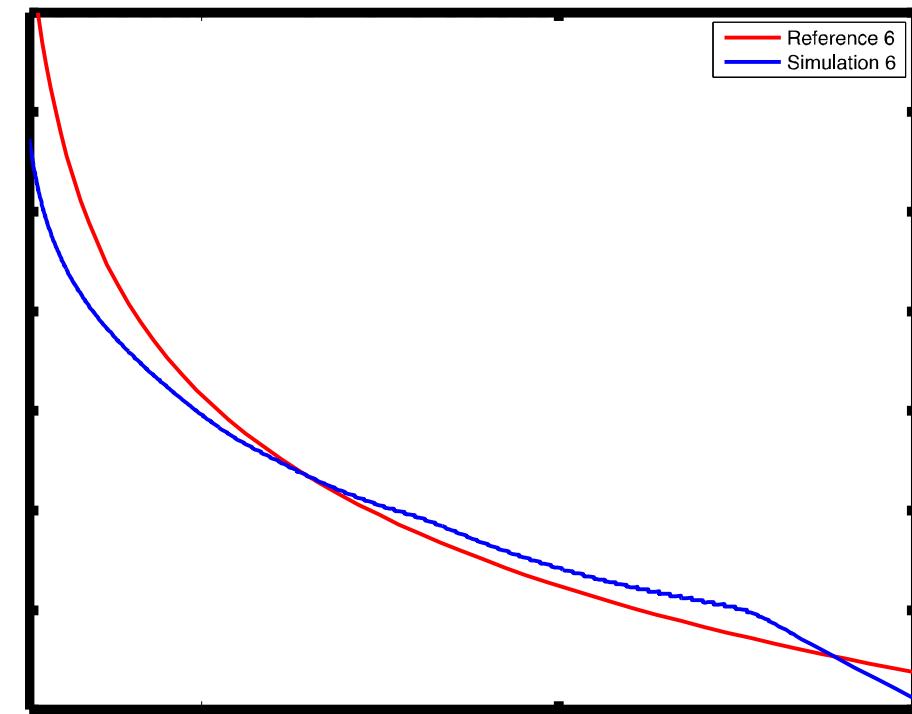


HBT6

TGP

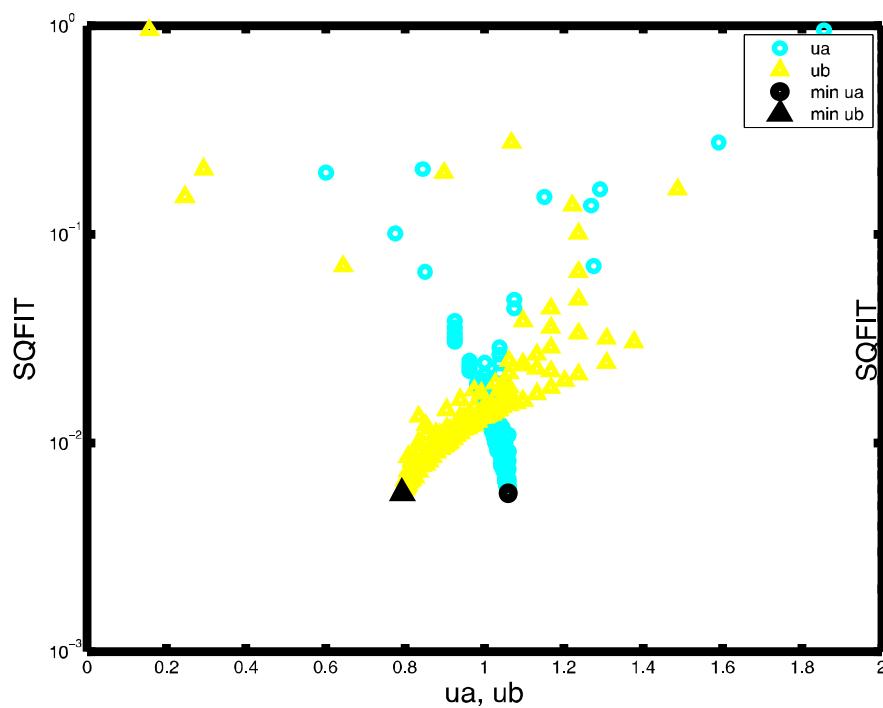


MOGA

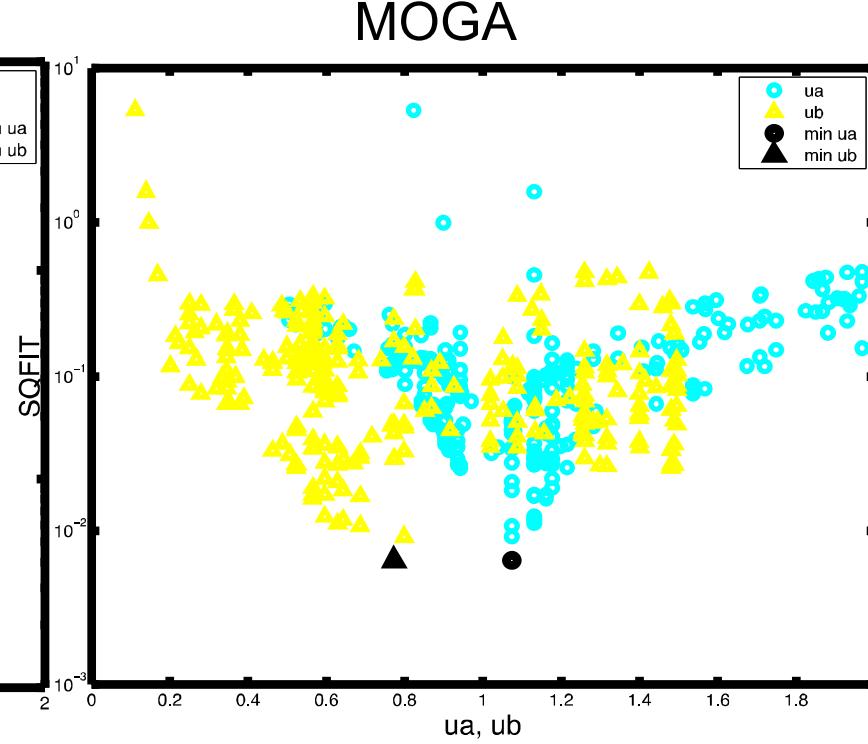


HBT6

TGP

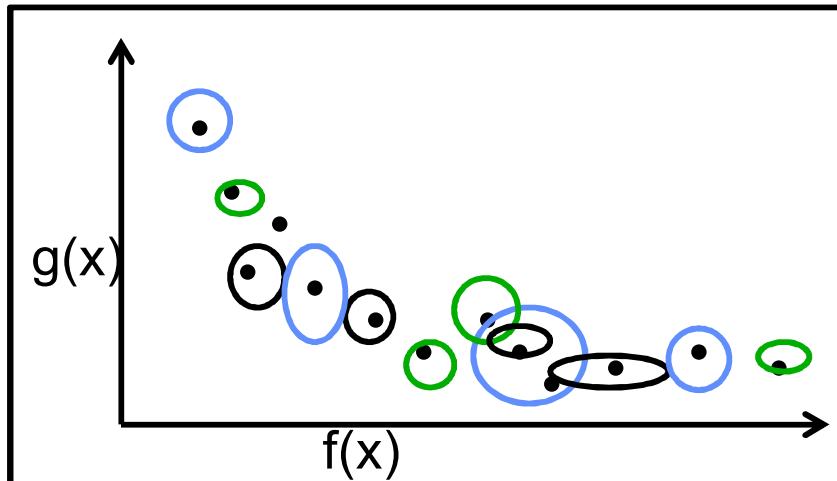


MOGA



What's Next

- ❖ **Test alternatives in the framework**
 - ❖ Optimization methods
 - ❖ Sampling methods
 - ❖ Surrogate modeling approaches
 - ❖ Expected improvement functions
- ❖ **Include optimization on the surrogate**
- ❖ **Apply to multi-objective problems**



Concept of uncertainty on the multi-objective Pareto front.

Collaborators/Contributors

Collaborators:

- ❖ Herbie Lee, John Guenter, UCSC
- ❖ Bobby Gramacy, University of Chicago
- ❖ Peter Bosman, CWI

Funding thanks to:

- ❖ American Institute of Mathematics (AIM)
- ❖ Sandia ASC & LDRD programs