

Rank aggregation via nuclear norm minimization

SAND2011-5533C

David F. Gleich

Sandia National Laboratories

Lek-Heng Lim

University of Chicago

ICIAM 2011

Vancouver, BC

Canada

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Which is a better list of good DVDs?

Lord of the Rings 3: The Return of ...	Lord of the Rings 3: The Return of ...
Lord of the Rings 1: The Fellowship	Lord of the Rings 1: The Fellowship
Lord of the Rings 2: The Two Towers	Lord of the Rings 2: The Two Towers
Lost: Season 1	Star Wars V: Empire Strikes Back
Battlestar Galactica: Season 1	Raiders of the Lost Ark
Fullmetal Alchemist	Star Wars IV: A New Hope
Trailer Park Boys: Season 4	Shawshank Redemption
Trailer Park Boys: Season 3	Star Wars VI: Return of the Jedi
Tenchi Muyo!	Lord of the Rings 3: Bonus DVD
Shawshank Redemption	The Godfather

Standard
rank aggregation
(the mean rating)

Nuclear Norm
based rank aggregation

Rank Aggregation

Given partial orders on subsets of items, rank aggregation is the problem of finding an overall ordering.

Voting Find the winning candidate

Program committees Find the best papers given reviews

Dining Find the best restaurant in Vancouver (*subject to a budget?*)

Ranking is *really* hard

Ken Arrow

All rank aggregations involve some measure of compromise

John Kemeny

A good ranking is the “average” ranking under a permutation distance

Dwork, Kumar, Naor, Sivikumar

NP hard to compute Kemeny’s ranking

*Given a hard problem,
what do you do?*

Numerically relax!

It'll probably be easier.

Embody chair
John Cantrell (flickr)

Suppose we had scores

Let s_i be the score of the i th movie/song/paper/team to rank

Suppose we can compare the i th to j th:

$$Y_{i,j} = s_i - s_j$$

Then $\mathbf{Y} = \mathbf{se}^T - \mathbf{es}^T$ is skew-symmetric, rank 2.

Also works for $Y_{i,j} = s_i/s_j$ with an extra log.

*Numerical ranking is intimately intertwined
with skew-symmetric matrices*

Kemeny and Snell, Mathematical Models in Social Sciences (1978)

Using ratings as comparisons

Ratings induce various skew-symmetric matrices.

$$Y_{i,j} = \frac{\sum_u R_{u,i} - R_{u,j}}{|\{u | R_{u,i} \text{ and } R_{u,j} \text{ exist}\}|} \quad \text{Arithmetic Mean}$$

$$Y_{i,j} = \log \frac{\Pr_u(R_{u,i} \geq R_{u,j})}{\Pr_u(R_{u,i} \leq R_{u,j})} \quad \text{Log-odds}$$

David 1988 – The Method of Paired Comparisons

Extracting the scores

Given \mathbf{Y} with all entries, then

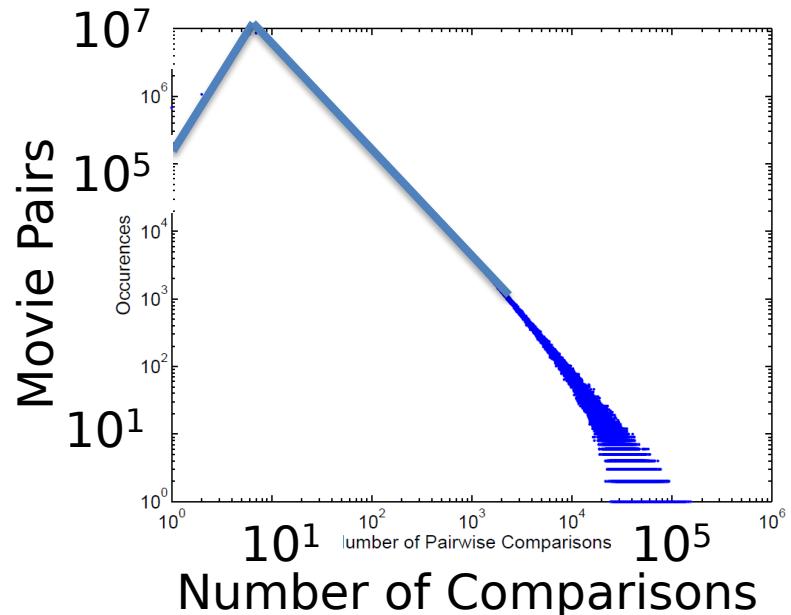
$\mathbf{s} = \frac{1}{n} \mathbf{Y} \mathbf{e}$ is the *Borda count*, the least-squares solution to \mathbf{s}

How many $Y_{i,j}$ do we have?

Most.

Do we *trust* all $Y_{i,j}$?

Not really.



Netflix data 17k movies,
500k users, 100M ratings-
99.17% filled

Only partial info? Complete it!

Let $\hat{Y}_{i,j}$ be known for $(i,j) \in \Omega$ We trust these scores.

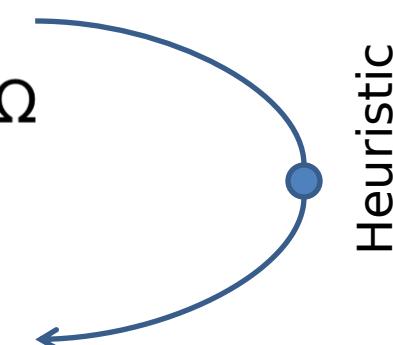
Goal Find the simplest skew-symmetric matrix that matches the data $\hat{Y}_{i,j}$

NP hard

$$\begin{aligned} & \text{minimize} && \text{rank}(\mathbf{Y}) \\ & \text{subject to} && \mathbf{Y} = -\mathbf{Y}^T \\ & && Y_{i,j} = \hat{Y}_{i,j} \text{ for all } (i,j) \in \Omega \end{aligned}$$

Convex

$$\begin{aligned} & \text{minimize} && \|\mathbf{Y}\|_* \\ & \text{subject to} && \mathbf{Y} = -\mathbf{Y}^T \\ & && Y_{i,j} = \hat{Y}_{i,j} \text{ for all } (i,j) \in \Omega \end{aligned}$$



$$\|\mathbf{Y}\|_* = \sum \sigma_i(\mathbf{Y}) \quad \text{best convex underestimator of rank on unit ball.}$$

Solving the nuclear norm problem

Use a LASSO formulation

$$\mathbf{b} = \text{vec}(\hat{Y}_{i,j})$$

$$\text{minimize} \quad \|\Omega(\mathbf{Y}) - \mathbf{b}\|$$

$$\text{subject to} \quad \|\mathbf{Y}\|_* \leq 2$$
$$\mathbf{Y} = -\mathbf{Y}^T$$

Jain et al. propose SVP for
this problem without
 $\mathbf{Y} = -\mathbf{Y}^T$

1. $\mathbf{Y}_0 = 0, t = 0$
2. REPEAT
3. $\mathbf{U}_t \mathbf{\Sigma}_t \mathbf{V}_t^T$ = rank-k SVD of
 $\Omega(\mathbf{Y}_t) - \eta(\Omega(\mathbf{Y}_t) - \mathbf{b})$
4. $\mathbf{Y}_{t+1} = \mathbf{U}_t \mathbf{\Sigma}_t \mathbf{V}_t^T$
5. $t = t + 1$
6. UNTIL $\|(\Omega(\mathbf{Y}_t) - \mathbf{b})\| < \varepsilon$

Skew-symmetric SVDs

Let $\mathbf{A} = -\mathbf{A}^T$ be an $n \times n$ skew-symmetric matrix with eigenvalues $i\lambda_1, -i\lambda_1, i\lambda_2, -i\lambda_2, \dots, i\lambda_j, -i\lambda_j$, where $\lambda_i > 0, \lambda_i \geq \lambda_{i+1}$ and $j = \lfloor n/2 \rfloor$. Then the SVD of \mathbf{A} is given by

$$\mathbf{A} = \mathbf{U} \begin{bmatrix} \lambda_1 & & & & & \\ & \lambda_1 & & & & \\ & & \lambda_2 & & & \\ & & & \lambda_2 & & \\ & & & & \ddots & \\ & & & & & \lambda_j & \\ & & & & & & \lambda_j \end{bmatrix} \mathbf{V}^T$$

for \mathbf{U} and \mathbf{V} given in the proof.

Proof Use the Murnaghan-Wintner form and the SVD of a 2x2 skew-symmetric block

This means that SVP will give us the skew-symmetric constraint “for free”

Exact recovery results

David Gross showed how to recover Hermitian matrices.
i.e. the conditions under which we get the exact \mathbf{s}

Note that $i\mathbf{Y}$ is Hermitian. Thus our new result!

THEOREM 5. *Let \mathbf{s} be centered, i.e., $\mathbf{s}^T \mathbf{e} = 0$. Let $\mathbf{Y} = \mathbf{s}\mathbf{e}^T - \mathbf{e}\mathbf{s}^T$ where $\theta = \max_i s_i^2 / (\mathbf{s}^T \mathbf{s})$ and $\rho = ((\max_i s_i) - (\min_i s_i)) / \|\mathbf{s}\|$. Also, let $\Omega \subset \mathcal{H}$ be a random set of elements with size $|\Omega| \geq O(2n\nu(1 + \beta)(\log n)^2)$ where $\nu = \max((n\theta + 1)/4, n\rho^2)$. Then the solution of*

$$\text{minimize } \|\mathbf{X}\|_*$$

$$\text{subject to } \text{trace}(\mathbf{X}^* \mathbf{W}_i) = \text{trace}((i\mathbf{Y})^* \mathbf{W}_i), \quad \mathbf{W}_i \in \Omega$$

is equal to $i\mathbf{Y}$ with probability at least $1 - n^{-\beta}$.

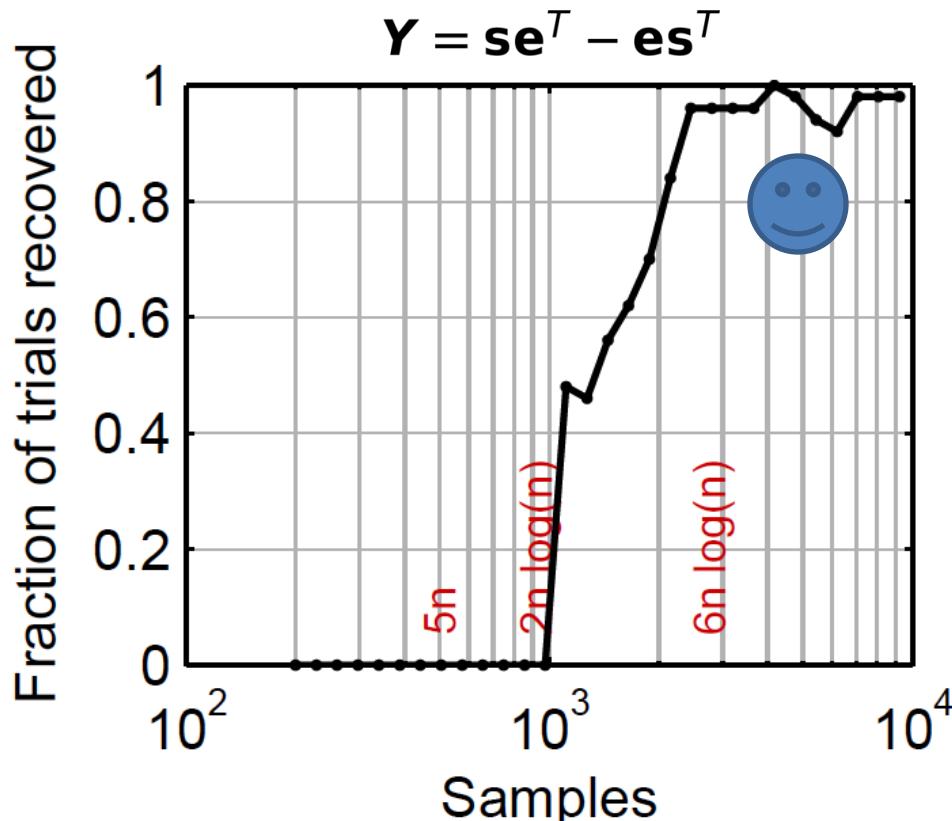
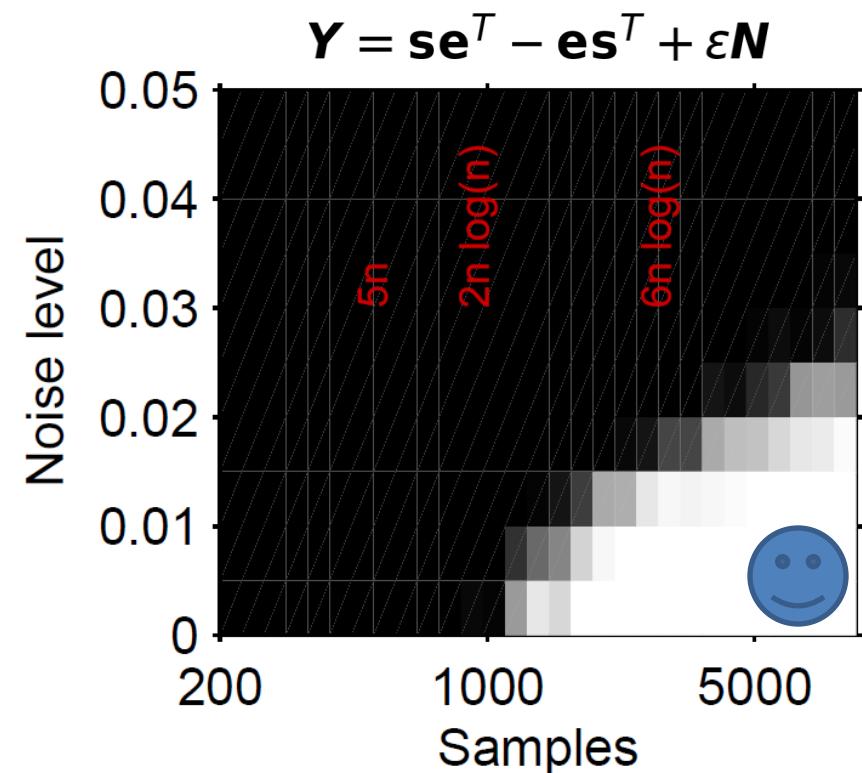
“ $n \log(n)$ ”

Gross arXiv 2010.

Recovery Discussion and Experiments

If $\mathbf{Y} = \mathbf{s}\mathbf{e}^T - \mathbf{e}\mathbf{s}^T$, then just look at differences from a connected set. Constants? Not very good.

“ $n \log(n)$ ” **Intuition for the truth.**

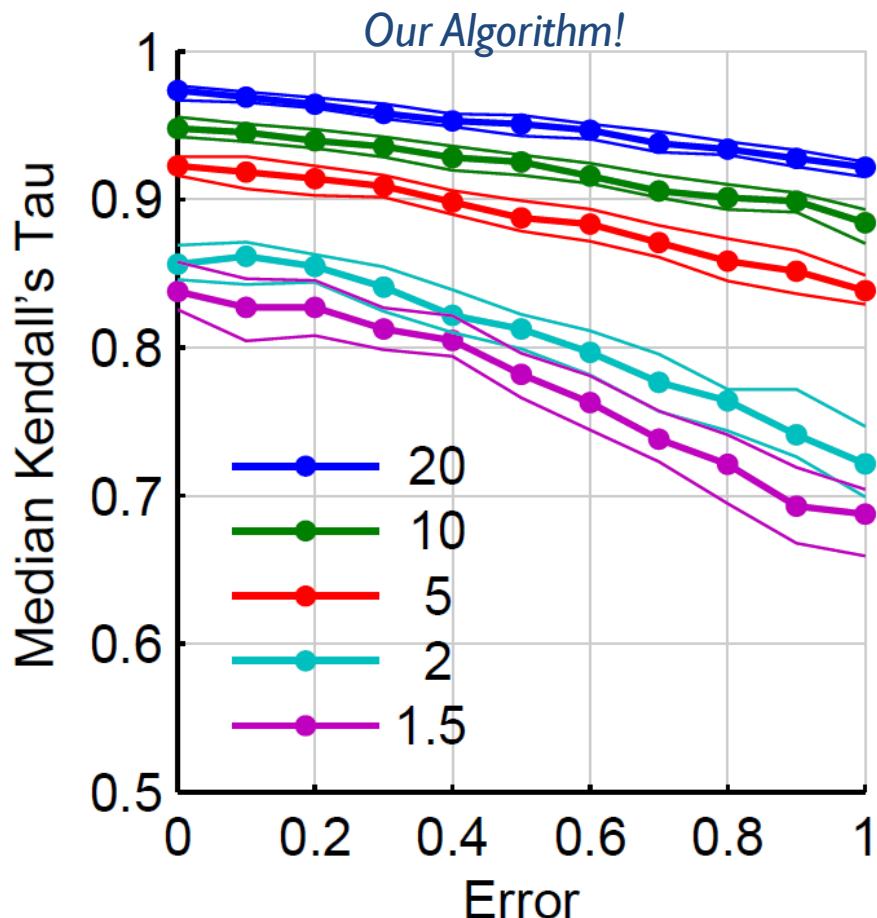
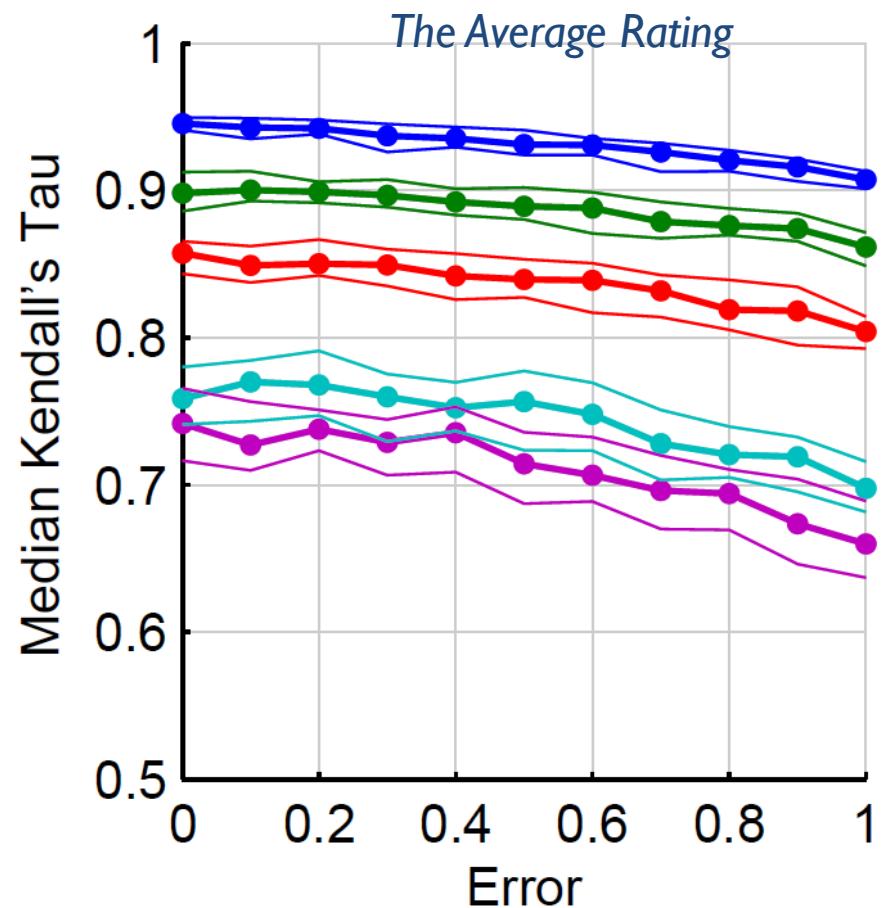


The Ranking Algorithm

0. INPUT \mathbf{R} (ratings data) and c (for trust on comparisons)
1. Compute \mathbf{Y} from \mathbf{R}
2. Discard entries with fewer than c comparisons
3. Set Ω , \mathbf{b} to be indices and values of what's left
4. $\mathbf{U}, \mathbf{S}, \mathbf{V}^T = \text{SVP}(\Omega, \mathbf{b}, 2)$
5. OUTPUT $\mathbf{s} = (1/n)\mathbf{U}\mathbf{S}\mathbf{V}^T\mathbf{e}$

Synthetic Results

Construct an Item Response Theory model. Vary number of ratings per user and a noise/error level



Conclusions and Future Work

Rank aggregation with the nuclear norm is:

principled

easy to compute

The results are much better than simple approaches.

1. Compare against others
van Dooren (fitting)
Massey (direct least squares for \mathbf{s})
2. Noisy recovery! More realistic sampling.
3. Skew-symmetric Lanczos based SVD?

Google nuclear ranking gleich

<https://dgleich.com/projects/skew-nuclear>

To appear KDD2011

Approximation Residuals

