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The calculation of entropy or free energy is a longstanding ) e,
. . Laboratories
problem in molecular dynamics

= Energy and Stress are explicitly calculated in first-principles
molecular dynamics codes

= Entropy is an implicit thermodynamic quantity, difficult to
access

= This makes the computation of free energies or phase
boundaries very time consuming (e.g. thermodynamic
integration or coexistence of phase simulations)

= The two-phase thermodynamic method (2PT)?!, developed at
Caltech, provides a novel approach to calculating entropies
for liquids

' Lin, Blanco, and Goddard, J. Chem. Phys. 119, 11792 (2003)




The starting point for the 2PT approach is the velocity ) e,
Laboratories
autocorrelation function
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All calculations presented here are first-principles molecular dynamics (FPMD) performed with VASP




The Fourier transform of the autocorrelation function A ,lﬁgg"igi:a,,
gives the mode spectrum density of states (DOS)
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The quasiharmonic spectral weighting function ) e,
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for the entropy diverges logarithmically at zero frequency

DOS 450K Na
80

70
60

50 |
40 | hard sphere weighting function (see Ref. 1)

30 |
20|
10|

(hv/k,T)
exp(hv/k,T) -1

—log[l —exp[-(hv/k,T)]]

quasiharmonic weighting function*

’ . w - 10" Hz

2 4 6 8 10

*More general than simple non-interacting harmonic motion (e.g. interacting, anharmonic)
Werthamer (1969), Hui and Allen (1975), Wallace in Thermodynamics of Crystals




The key element of the 2PT approach is to decompose the ) e,
density of states into gas-like and solid-like components
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* The diffusive (gas-like) component is modeled as a hard
sphere gas, which removes the divergent behavior

= The remaining portion is treated as a solid and the entropy is
computed with the quasiharmonic weighting function

d) 2PT

O(t) = (1 = fg)@s(t) + fgPq()

solid-like F(v) = (1— f3)Fs(v) + foFy(v)

gas-like

S(v)

From Ref. 1




The 2PT method gives the right trend, but systematically ) e,
Laboratories
overestimates the total entropy for liquid sodium
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Similar results for sodium were found using the 2PT method by
Teweldeberhan and Bonev, Phys. Rev. B 83, 134120 (2011)

|the first aeelication of 2PT with ab initio tools, that I’'m aware o:| 7



The hard sphere model contributes a Lorentzian tail )t
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that exceeds the total density of states
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The Lorentzian tail and excess entropy derive from the exponential decay of correlations in the hard sphere model




We use a Memory Function* representation to derive ) e,
. . . . . Laboratories
a consistent and realistic model for the diffusive component

d<I> t "]
() / K (1)®y(t — 7)dr St and Tosi, 1067

The frequency spectrum is given by

1

1 1
Fg(V) = 9

Kq,(i2mv) +2nv  Ky(—i2nv) — 27y

where K,(s) is the Laplace transform of K, (7)

. . . B2 Recovers hard-sphere
With a Gaussian memory function K (1) =A ge 9T |mBow,

Satisfies formal constraints
B T 2
Ky(s)=A ‘/4B exp[ ] Erfc| \/_ ]




We apply the Memory Function description to the solid-like () jas,
and gas-like components independently o
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The self-consistent solution is found by equating moments ) foms,

Moy, n
B(t) = Z( " 2772,)!t2n where Map = (w™")p

These moments don’t exist
for the hard-sphere system

My = (1 — fg)M2s = ng2ga
A[4==(1_'jb)A[®;+'fbAlﬁr

M, and M, are the moment totals, extracted from the full DOS

and so forth.

The Memory Function moments are computed through a recursion relation

n 5 n dn
Man =) ()" My ny KV = K ()
k=1 a
M2 — A7
For the Gaussian kernel M, = A% + 2AB.
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With a solution at the level of four moments, the tail of the )t
Laboratories
gas-like portion blends smoothly with the total density of states
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The Memory Function provides a diffusive autocorrelation )t
Laboratories
with a consistently determined coherence time
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The calculated entropies for sodium agree with data ) e,
to within ~ 1% with the Memory Function treatment
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Symbol widths for calculations represent ~ 1%




Results are equally good for Sn and Ga, which have high

correlation entropy, but size effects are apparent
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High correlation entropy appears to contribute to greater size effects
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Agreement with data is generally within 1% ) faor
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U *The magnetic contribution to the entropy is
. computed and included for iron (~1 k/atom)
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Measured values are Hultgren et al. (“selected values” from multiple sources) L6
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The two phase (2PT) method of computing liquid entropies systematically
overestimates the entropy for liquid metals when modeling the diffusive
component with hard spheres

A quasi-hard sphere autocorrelation component, modeled within the
framework of Memory Function theory, eliminates the source of the
excess entropy

The approach is validated against experimental data for several elements
with diverse properties

The calculation of free energies and phase boundaries is greatly simplified
with this approach and provides for a direct calculation of melt boundaries

Shock state entropies and release adiabats are readily calculated



Accurate treatment of iron requires accounting for the )t
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magnetic entropy due to spin fluctuations in the liquid
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