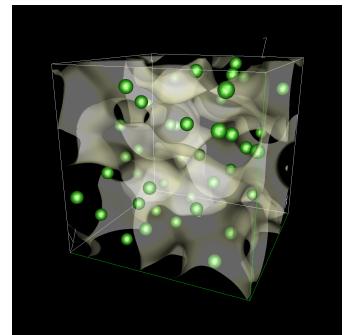
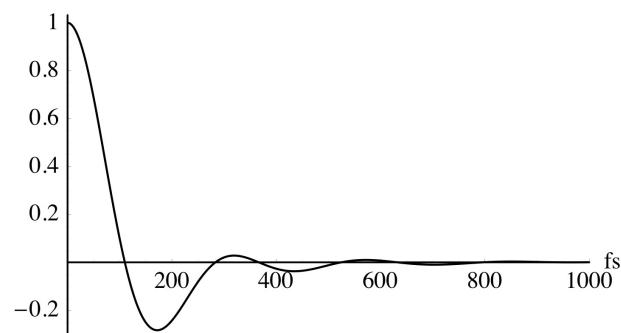
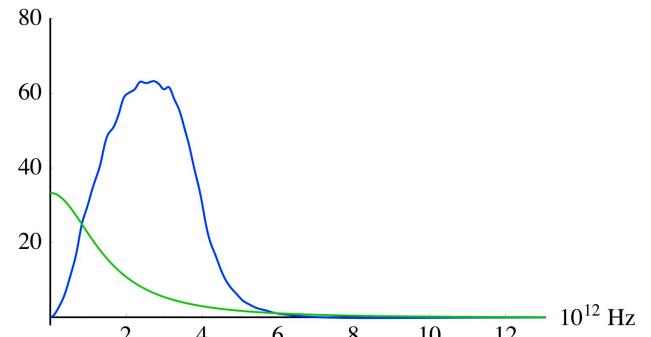
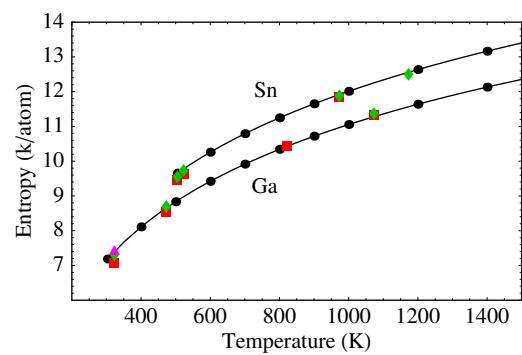


Exceptional service in the national interest



First-principles entropy calculations for liquid metals and warm dense matter



Mike Desjarlais
 Sandia National Laboratories
 Albuquerque, New Mexico
 SCCM/AIRAPT 2013 Seattle

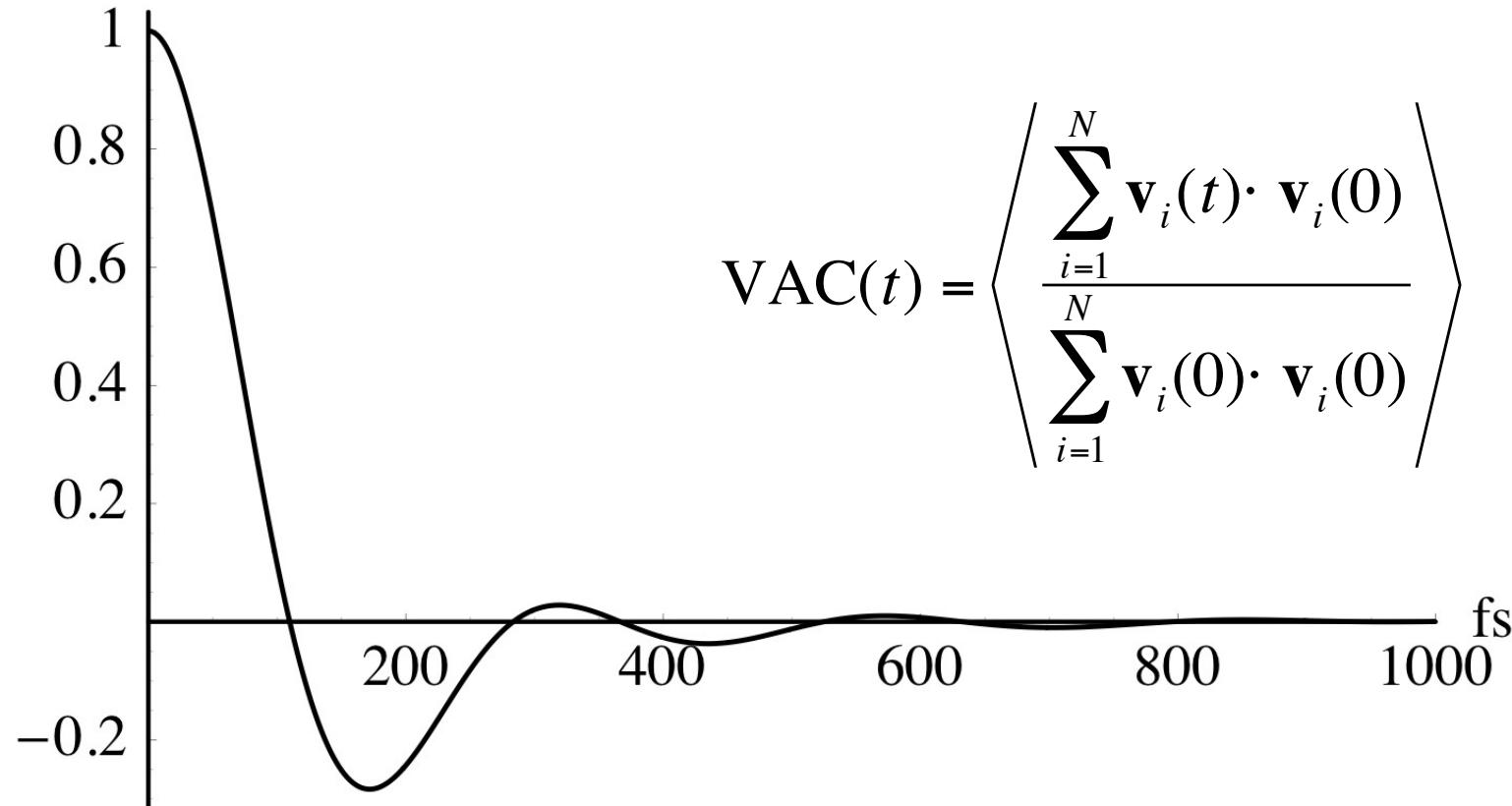
The calculation of entropy or free energy is a longstanding problem in molecular dynamics

- Energy and Stress are explicitly calculated in first-principles molecular dynamics codes
- Entropy is an implicit thermodynamic quantity, difficult to access
- This makes the computation of free energies or phase boundaries very time consuming (e.g. thermodynamic integration or coexistence of phase simulations)
- The two-phase thermodynamic method (2PT)¹, developed at Caltech, provides a novel approach to calculating entropies for liquids

¹ Lin, Blanco, and Goddard, J. Chem. Phys. **119**, 11792 (2003)

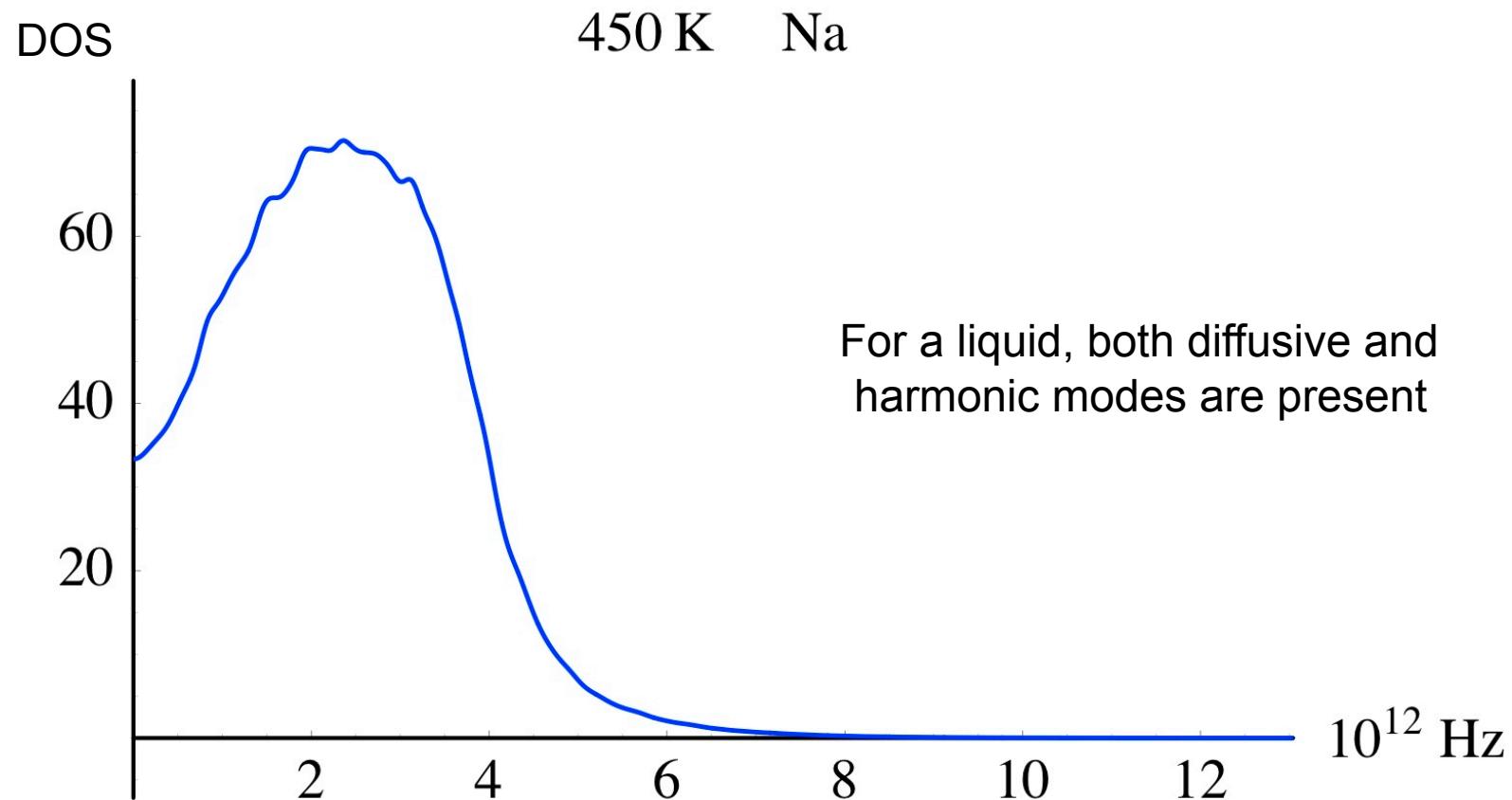
The starting point for the 2PT approach is the velocity autocorrelation function

450 K Na

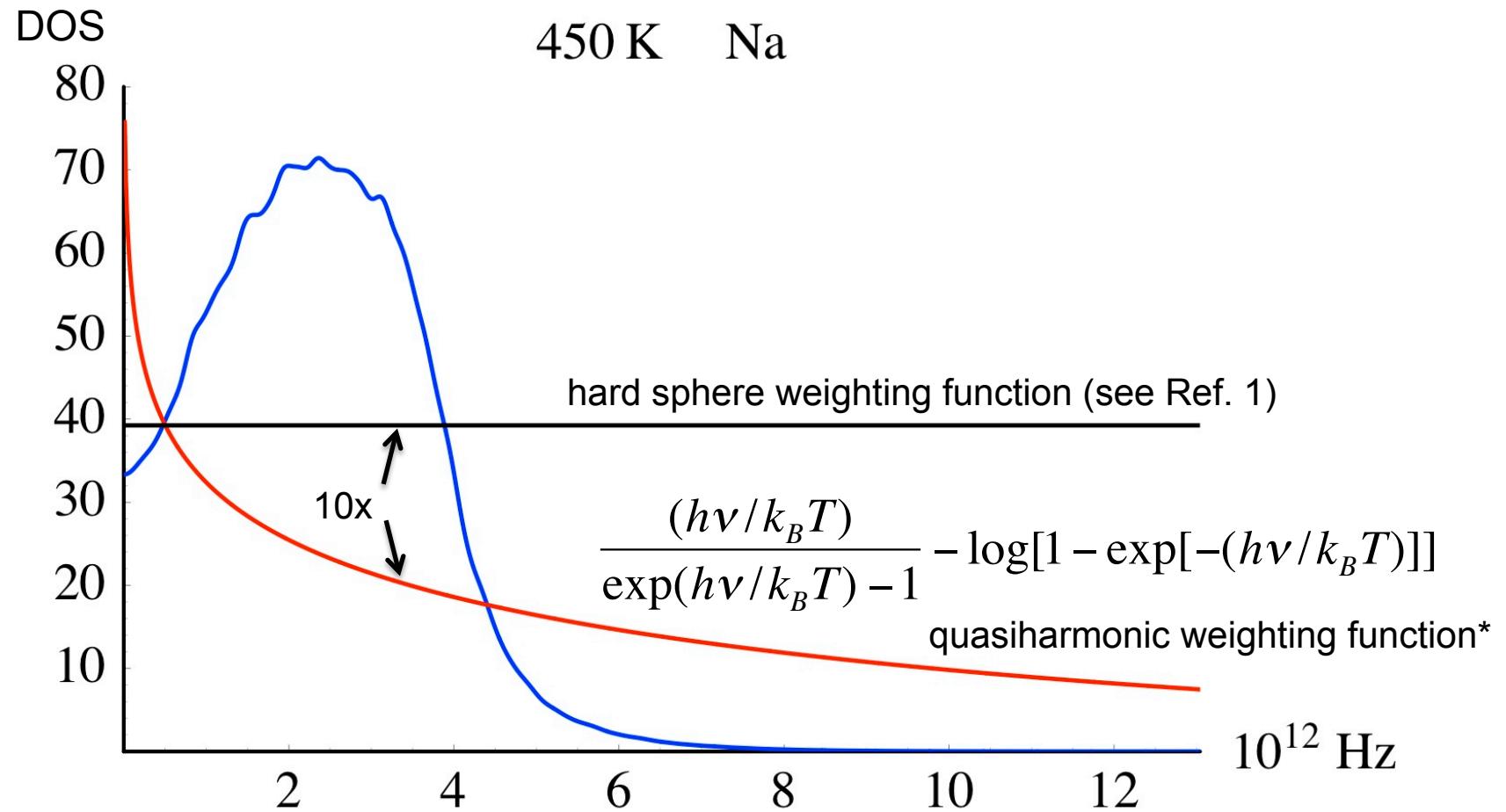


All calculations presented here are first-principles molecular dynamics (FPMD) performed with VASP

The Fourier transform of the autocorrelation function gives the mode spectrum density of states (DOS)



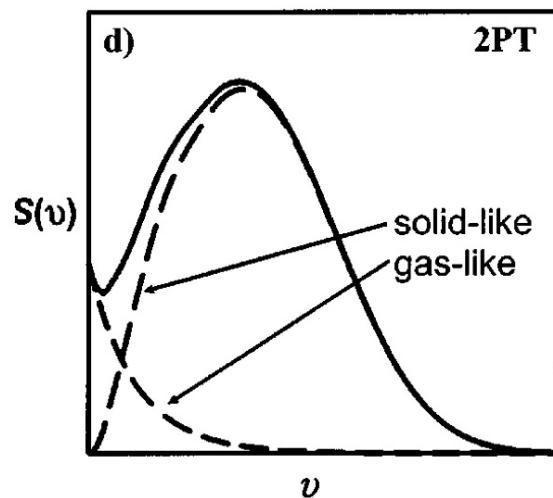
The quasiharmonic spectral weighting function for the entropy diverges logarithmically at zero frequency



*More general than simple non-interacting harmonic motion (e.g. interacting, anharmonic)
Werthamer (1969), Hui and Allen (1975), Wallace in *Thermodynamics of Crystals*

The key element of the 2PT approach is to decompose the density of states into gas-like and solid-like components

- The diffusive (gas-like) component is modeled as a hard sphere gas, which removes the divergent behavior
- The remaining portion is treated as a solid and the entropy is computed with the quasiharmonic weighting function

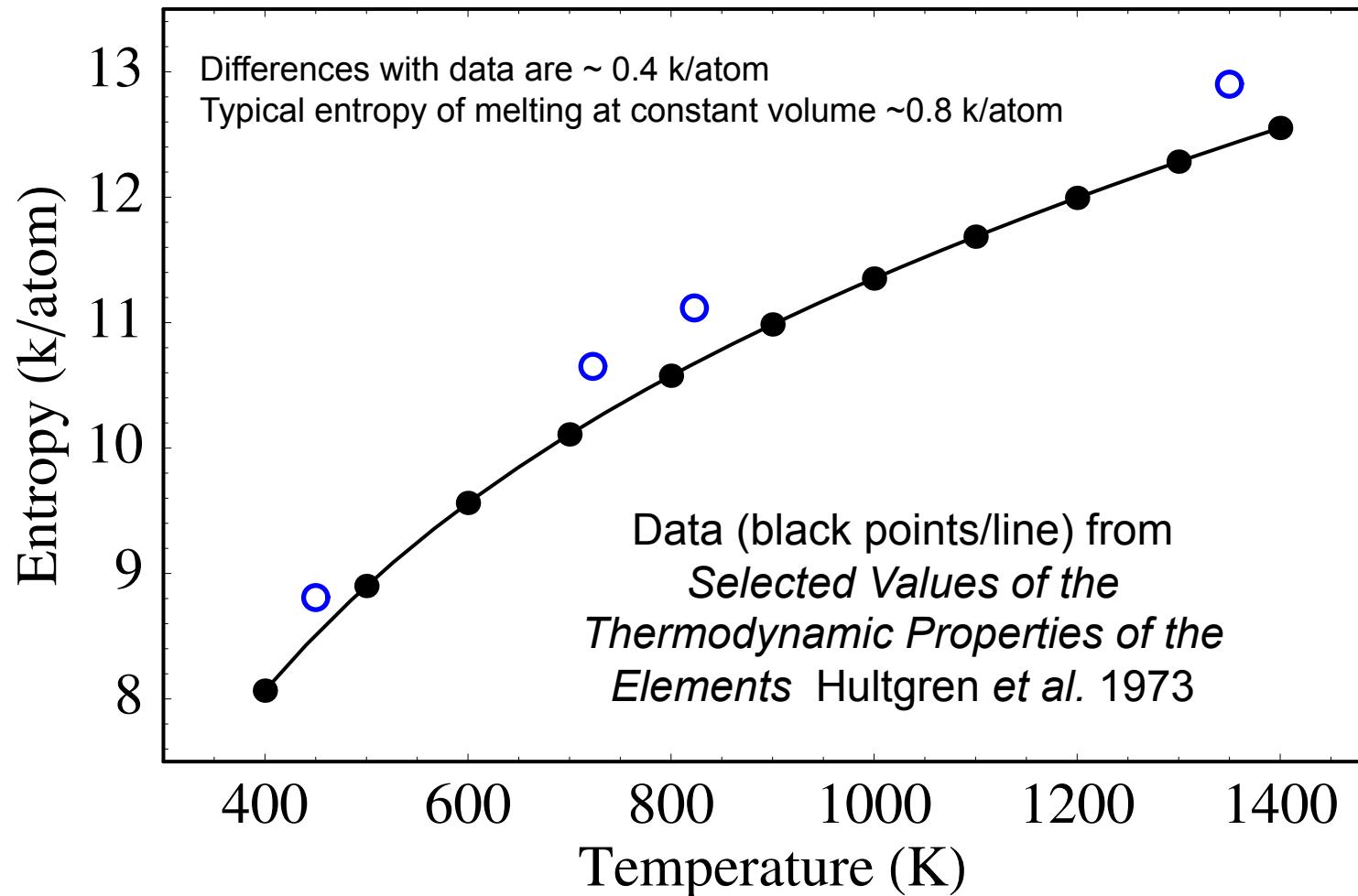


$$\Phi(t) = (1 - f_g)\Phi_s(t) + f_g\Phi_g(t)$$

$$F(\nu) = (1 - f_g)F_s(\nu) + f_gF_g(\nu)$$

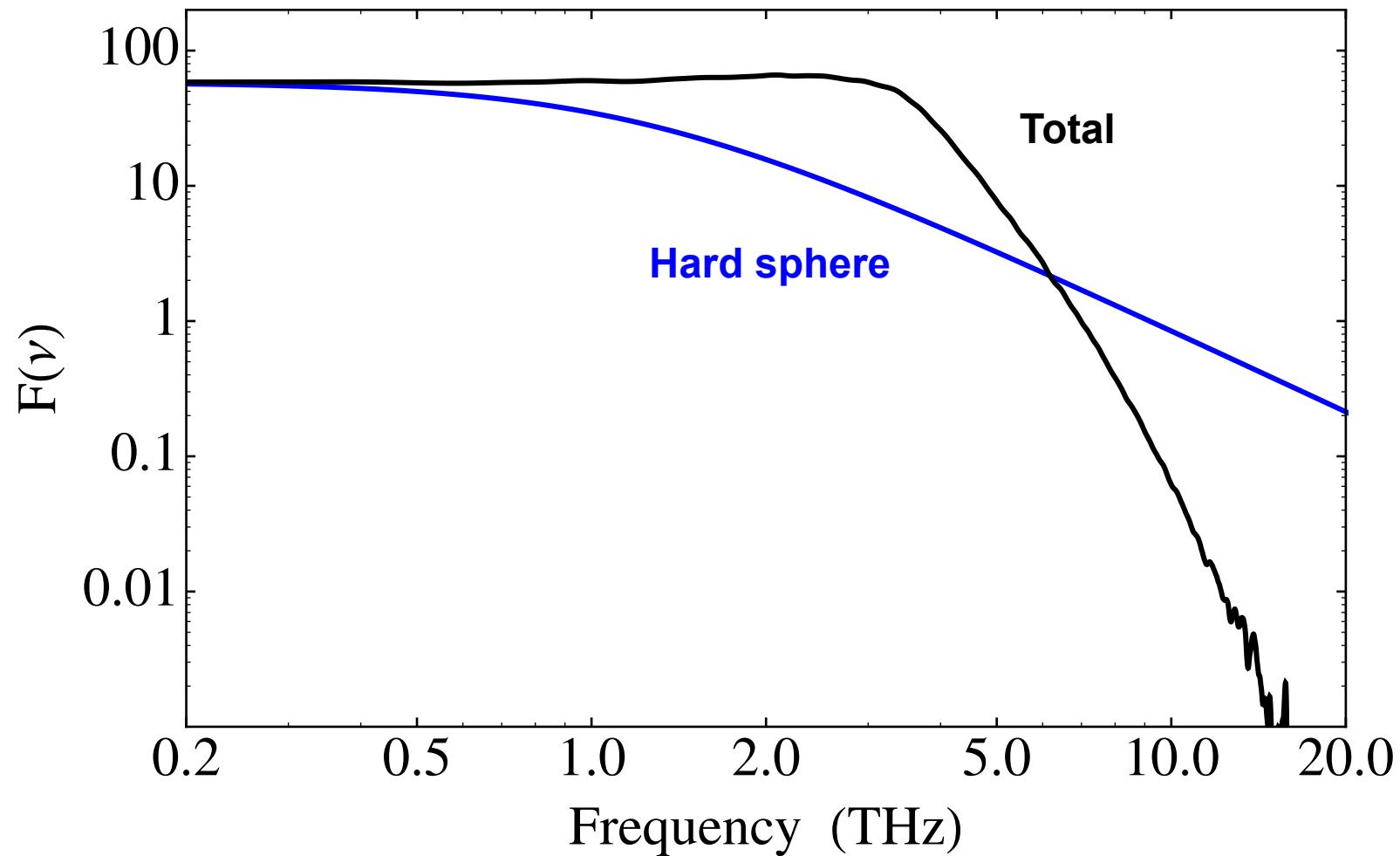
From Ref. 1

The 2PT method gives the right trend, but systematically overestimates the total entropy for liquid sodium



Similar results for sodium were found using the 2PT method by
Teweldeberhan and Bonev, Phys. Rev. B **83**, 134120 (2011)
[the first application of 2PT with *ab initio* tools, that I'm aware of]

The hard sphere model contributes a Lorentzian tail that exceeds the total density of states



The Lorentzian tail and excess entropy derive from the exponential decay of correlations in the hard sphere model

We use a Memory Function* representation to derive a consistent and realistic model for the diffusive component

$$\frac{d\Phi_g(t)}{dt} = - \int_0^t K_g(\tau) \Phi_g(t - \tau) d\tau$$

* Tjon, 1966
Singwi and Tosi, 1967

The frequency spectrum is given by

$$F_g(\nu) = \frac{1}{2} \left[\frac{1}{\hat{K}_g(i2\pi\nu) + i2\pi\nu} + \frac{1}{\hat{K}_g(-i2\pi\nu) - i2\pi\nu} \right]$$

where $\hat{K}_g(s)$ is the Laplace transform of $K_g(\tau)$

With a Gaussian memory function $K_g(\tau) = A_g e^{-B_g \tau^2}$

Recovers hard-sphere
as $B \rightarrow \infty$,
Satisfies formal constraints

$$\hat{K}_g(s) = A_g \sqrt{\frac{\pi}{4B_g}} \exp\left[\frac{s^2}{4B_g}\right] \operatorname{Erfc}\left[\frac{s}{2\sqrt{B_g}}\right]$$

We apply the Memory Function description to the solid-like and gas-like components independently

$$\frac{d\Phi_s(t)}{dt} = - \int_0^t A_s e^{-B_s \tau^2} \Phi_s(t - \tau) d\tau$$

$$\frac{d\Phi_g(t)}{dt} = - \int_0^t A_g e^{-B_g \tau^2} \Phi_g(t - \tau) d\tau$$

The self-consistent solution is found by equating moments

$$\Phi(t) = \sum_{n=1}^{\infty} (-1)^n \frac{M_{2n}}{(2n)!} t^{2n} \quad \text{where } M_{2n} = \langle \omega^{2n} \rangle_F$$

These moments don't exist
for the hard-sphere system

$$\begin{aligned} M_2 &= (1 - f_g)M_{2s} + f_g M_{2g}, \\ M_4 &= (1 - f_g)M_{4s} + f_g M_{4g}. \end{aligned} \quad \text{and so forth.}$$

M_2 and M_4 are the moment totals, extracted from the full DOS

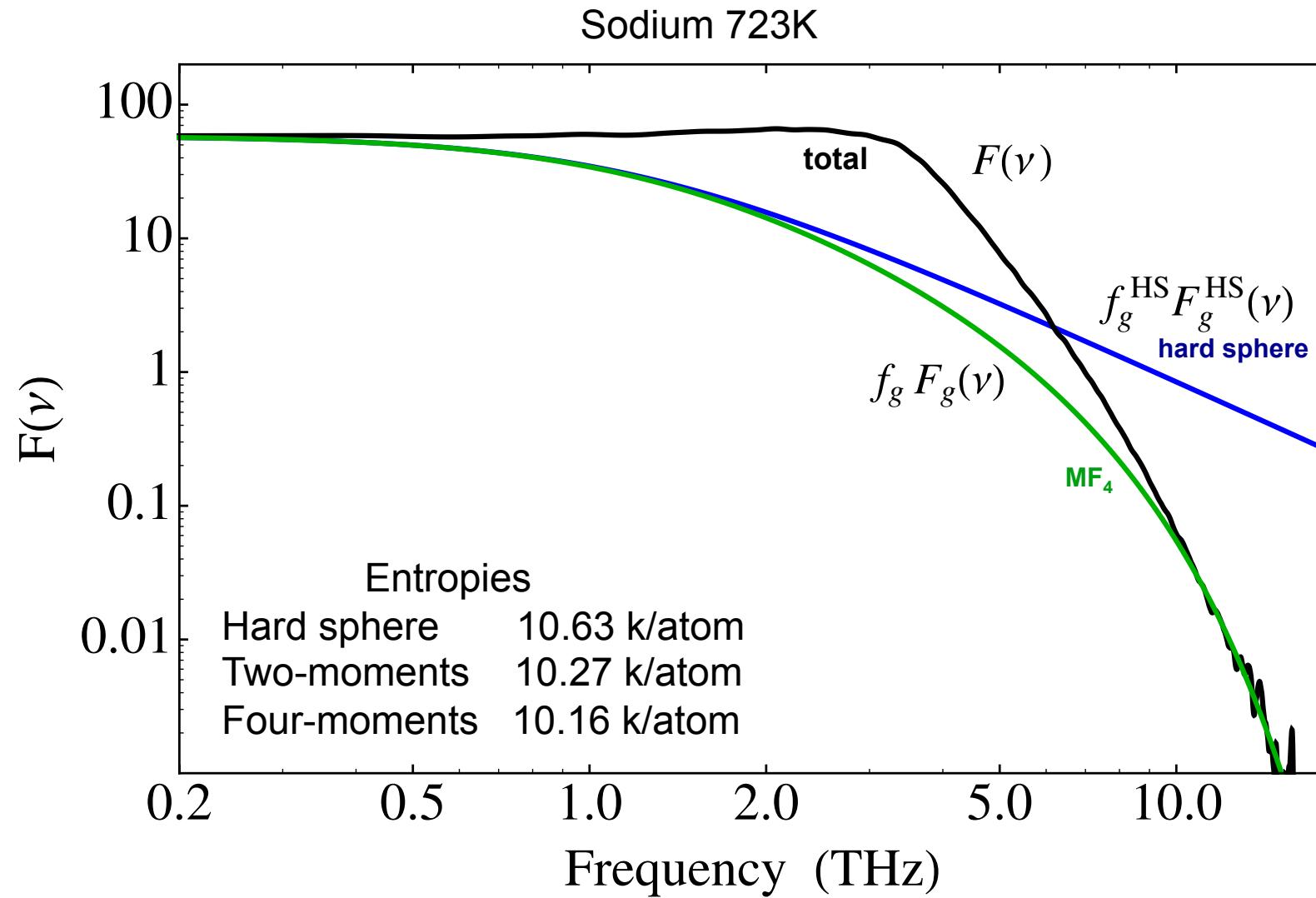
The Memory Function moments are computed through a recursion relation

$$M_{2n} = \sum_{k=1}^n (-1)^{k+1} K_0^{(2k-2)} M_{2(n-k)} \quad K_0^{(n)} = \left. \frac{d^n}{dt^n} K(t) \right|_{t=0}$$

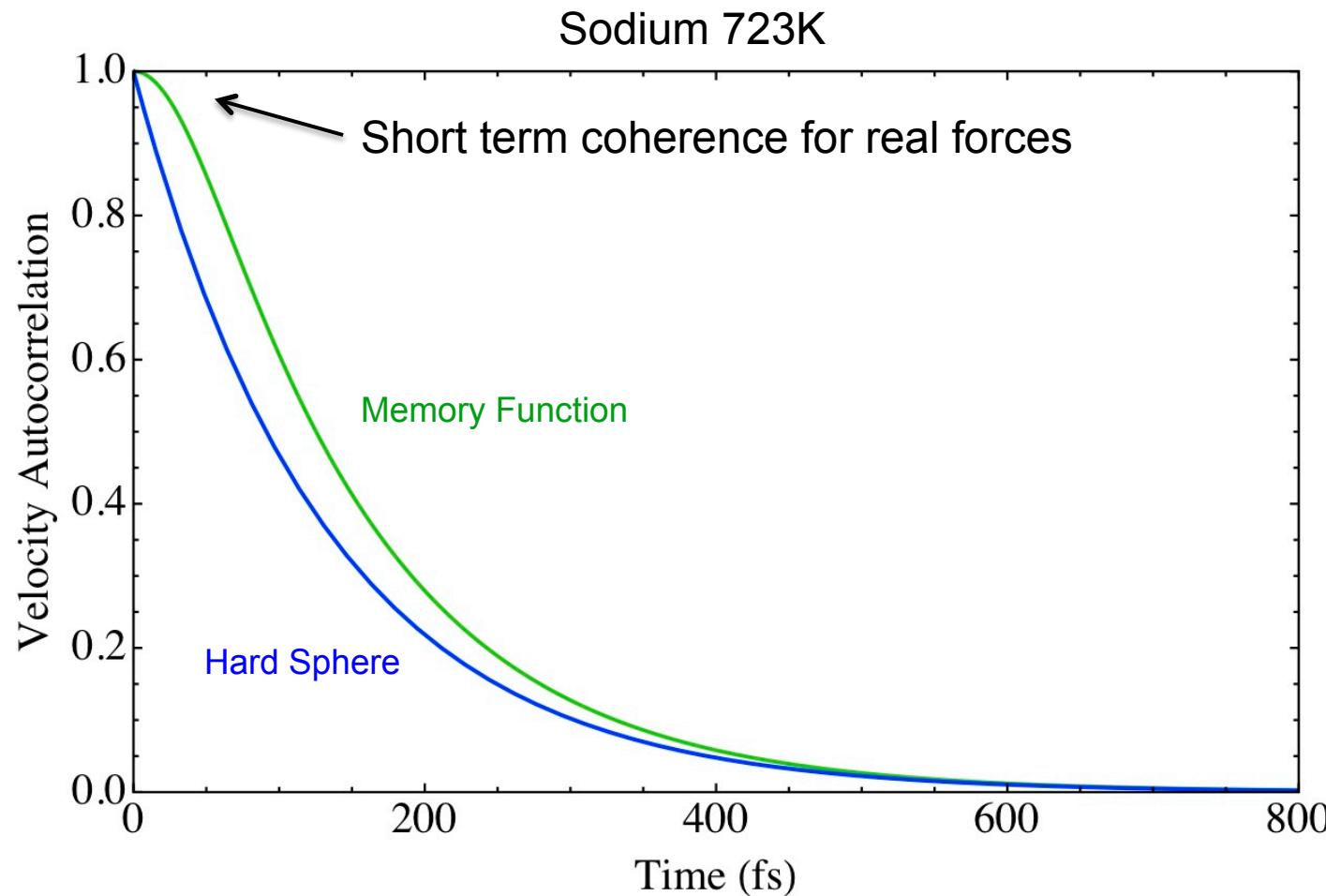
For the Gaussian kernel

$$\begin{aligned} M_2 &= A, \\ M_4 &= A^2 + 2AB. \end{aligned}$$

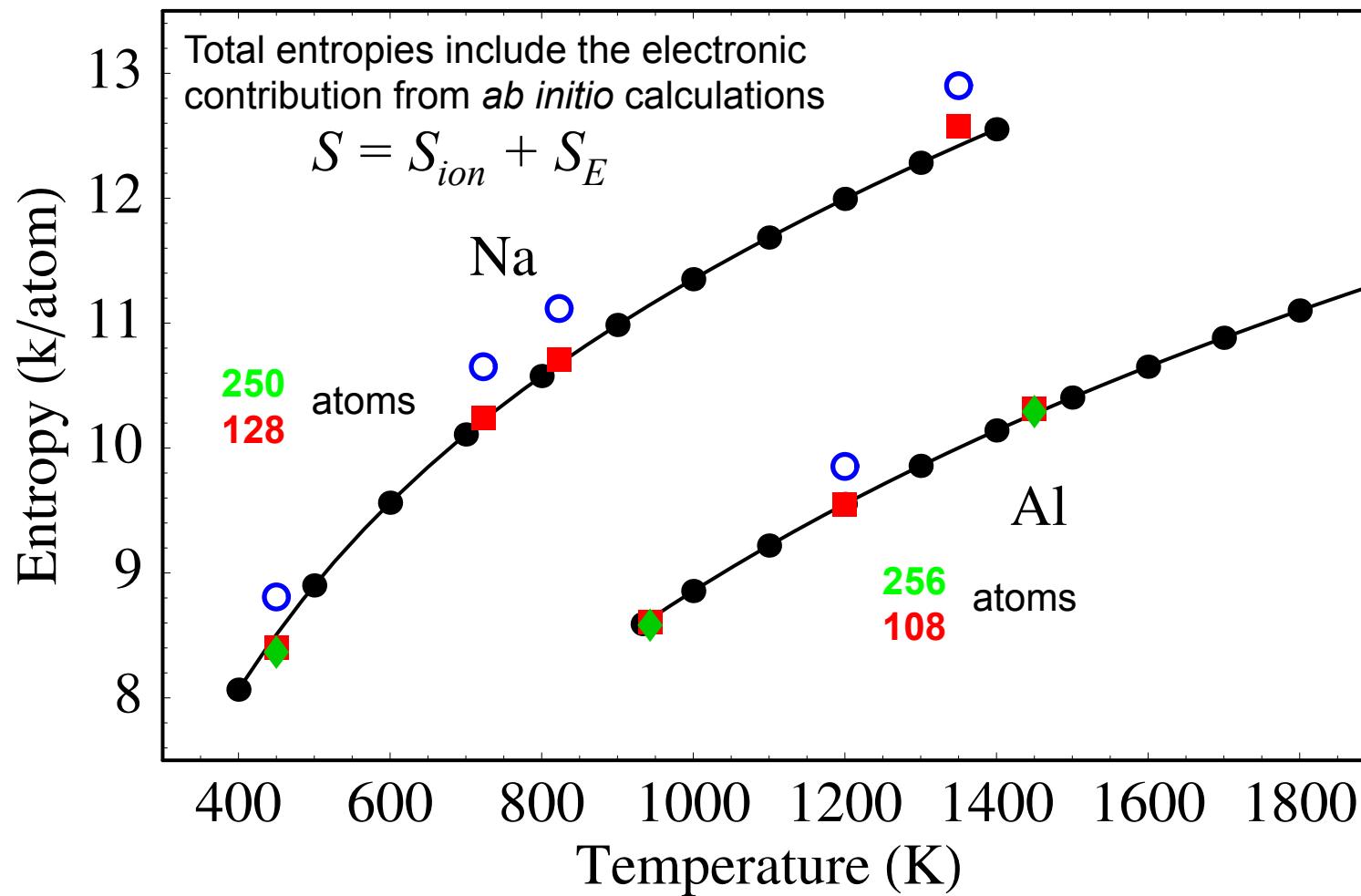
With a solution at the level of four moments, the tail of the gas-like portion blends smoothly with the total density of states



The Memory Function provides a diffusive autocorrelation with a consistently determined coherence time

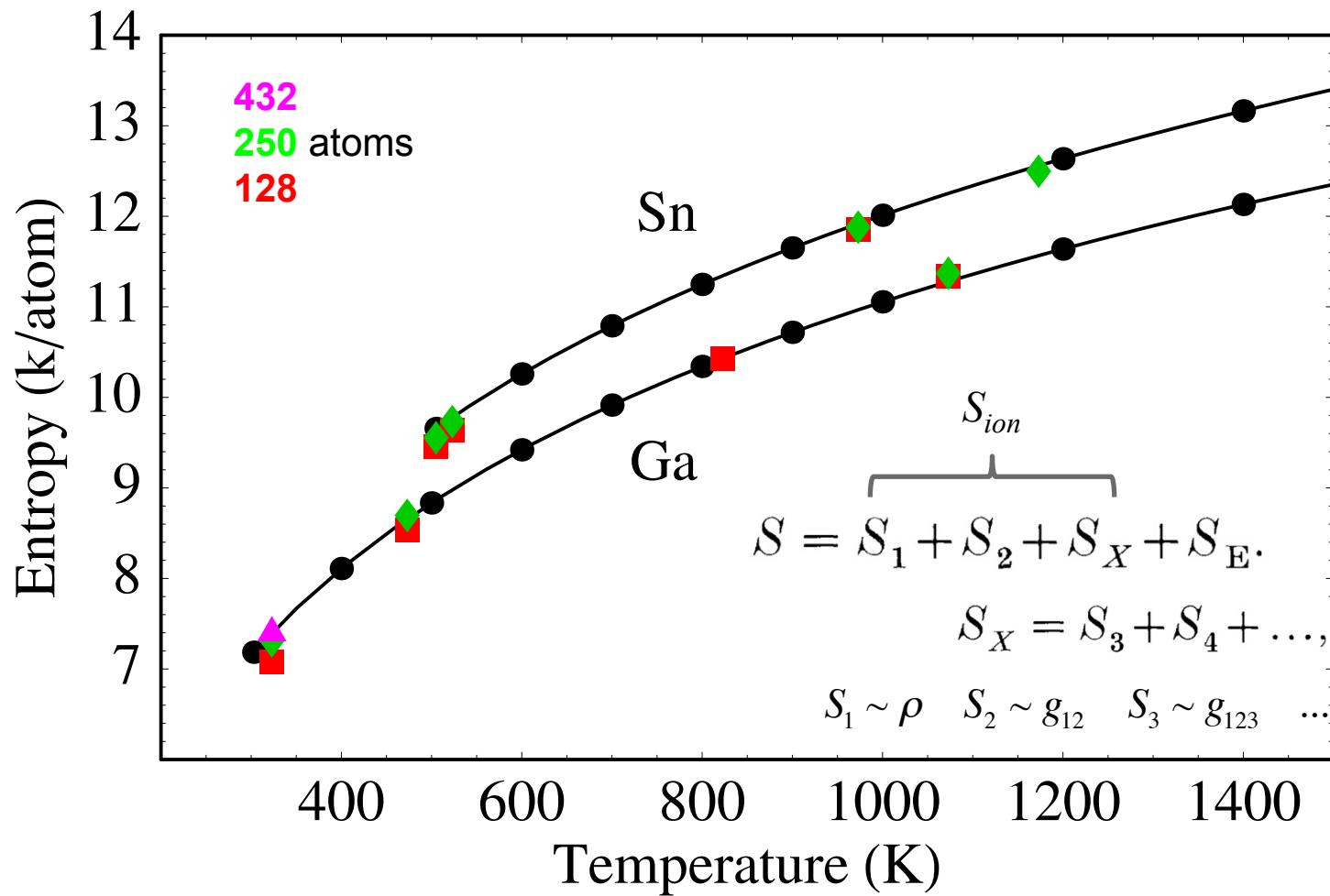


The calculated entropies for sodium agree with data to within $\sim 1\%$ with the Memory Function treatment



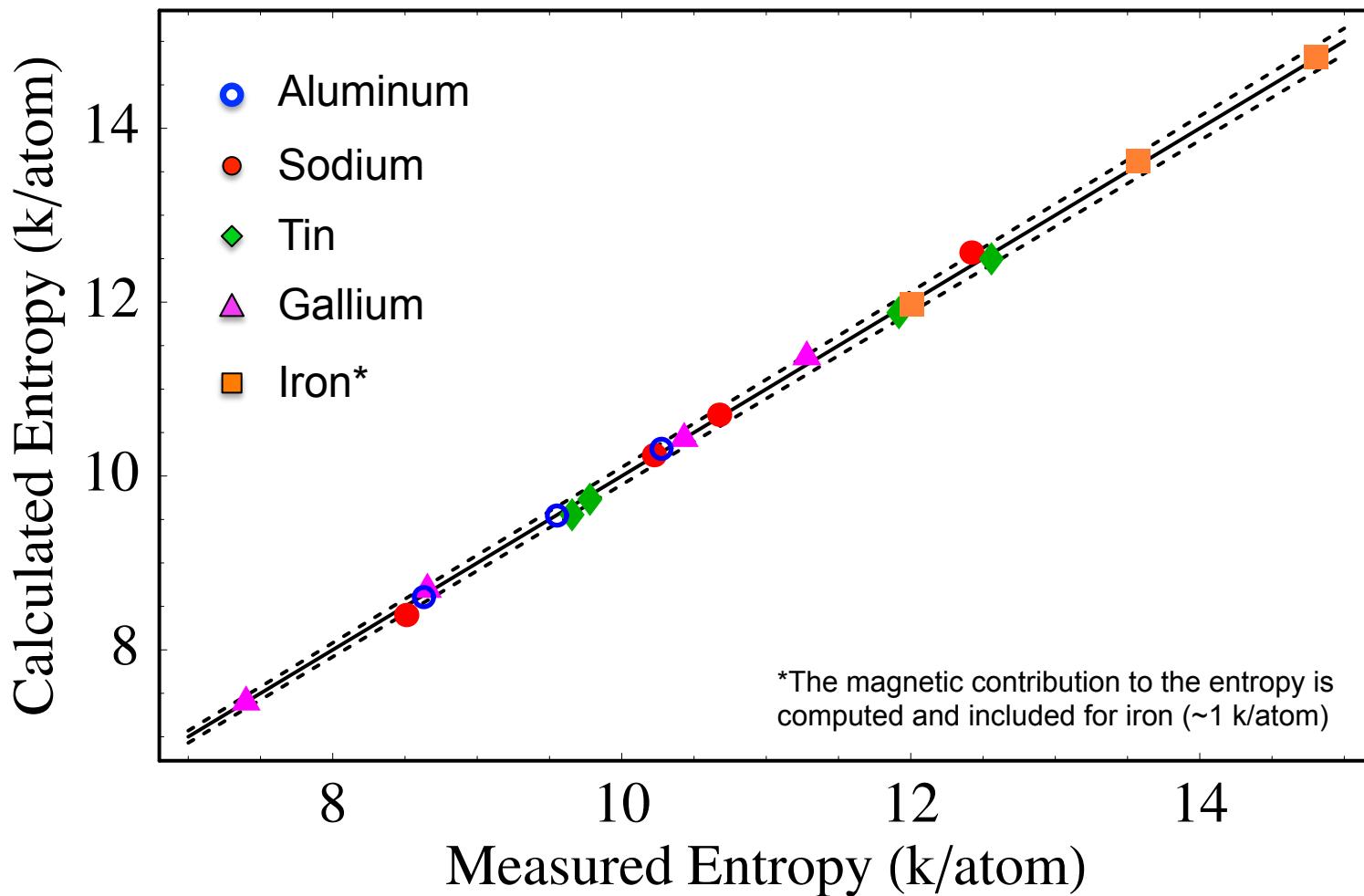
Symbol widths for calculations represent $\sim 1\%$

Results are equally good for Sn and Ga, which have high correlation entropy, but size effects are apparent



High correlation entropy appears to contribute to greater size effects

Agreement with data is generally within 1%



Measured values are Hultgren *et al.* ("selected values" from multiple sources)

Summary

- The two phase (2PT) method of computing liquid entropies systematically overestimates the entropy for liquid metals when modeling the diffusive component with hard spheres
- A quasi-hard sphere autocorrelation component, modeled within the framework of Memory Function theory, eliminates the source of the excess entropy
- The approach is validated against experimental data for several elements with diverse properties
- The calculation of free energies and phase boundaries is greatly simplified with this approach and provides for a direct calculation of melt boundaries
- Shock state entropies and release adiabats are readily calculated

Accurate treatment of iron requires accounting for the magnetic entropy due to spin fluctuations in the liquid

