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Abstract. A new adaptive tabulation scheme for multi-phase equatidrssate (EOS) is described. Adap-
tation allows verification that a table represents an EOSeahtmdsome desired accuracy at a much lower
computational cost than standard tables. Computatiofiaiezfcy is provided through the use of a quad-tree
representation. Using both rectangular and triangul@rpdlation regions results in accurate descriptions of
phase boundaries. The new format is demonstrated on a egpatise multi-phase EOS model.
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INTRODUCTION

Equation of state (EOS) tabulation is a necessity for
hydrodynamic codes as all but the most simple EOS
models are too computational costly for inline eval-
uation. As these code are increasingly called upon to
provide predictive capabilities, one must account for
the uncertainty associated with the EOS model. Tab-
ulation poses a problem as it introduces an additional
layer of approximation. By providing a verified EOS
table, with a quantified approximation error, one may
effectively eliminate this additional layer by ensur-
ing that the tabulation errors are sufficiently less than
the errors associated with the EOS model. For ex-
ample, preliminary investigations have found that the
pressure must be verified to better than 5% [1]. Un-
fortunately, for the standard tabulation schemes such
tolerances may require extremely large tables.
Adaptive tabulation provides a means of manag-
ing the verification and storage costs by removing
unneeded information from a table. At the same
time, one may build in other desirable traits, such
as thermodynamic consistency and stability along
with accurate phase boundaries. An adaptive quad-
tree based tabulation has been proposed that con-
forms to phase boundaries by mapping a single phase
region into a rectangle [2]. This is a promising ap-
proach except that in general the phase mapping can

be computationally costly for state look ups. High-
order interpolation [3] and the tuned regression esti-
mator method [4] have been suggested as ways to
guarantee thermodynamic consistency. Again, it is
not clear that such a guarantee is worth the higher in-
terpolation cost. A redesigned rectangular tabulation
scheme that naturally incorporates phase boundary
information has also been created [5]. Adaptivity was
not included in the design however, so it may suf-
fer similar storage issues as the standard tabulation
when performing verification. Building upon these
ideas, the goal of the current work is to develop a
verifiably accurate tabulation scheme that is compu-
tationally efficient in both speed and storage.

SIMPLE MULTI-PHASE EOS

A simple EOS was developed to be representative of
typical wide-range, multi-phase EOS models while
remaining computationally very simple. To this end,
a two-phase system was chosen, with a fluid phase
built upon the van der Waals EOS. A solid phase was
also included by adding an empirical melting term
[6]to van der Waals EOS. The resulting pressure sur-
face is shown in Fig. 1, where the presence of solid,
liquid, and gaseous phases are evident along with
melt, vaporization, and sublimation regions. This toy
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FIGURE 1. Pressure isotherms and phase boundaries of
the toy EOS model. The melt curve lies at large density,
the vapor dome in the center, and the sublimation region at
low temperature. A triple line connects the three regions.
Arbitrary pressure values highlight the logarithmic scale

EOS model is not calibrated to any real system, but
exhibits the phase behavior typical of simple met-
als. The units and values for the model are arbitrary
and thus not shown in the plots herein. Furthermore,
all plots variables use linear scales with variables in-
crease in magnitude to the right and upwards.

SESAME TABLES

The SESAME tabular format is the de-facto stan-
dard for EOS tabulation. It stores EOS data on an
arbitrary, rectangular density-temperature grid upon
which one tabulates, at a minimum, the pressure and
internal energy [7]. To obtain an EOS model one then
assigns a particular interpolation scheme to this tab-
ular data. While many types of interpolation may be
used, herein we will only use a transfinite Coon’s
patch with rational interpolation [8].

SESAME tables have a number of deficiencies.
Interpolated values may fail to satisfy the first law,
dE = TdS—PdV, or result in instabilitiesg& < 0

and/org—$ < 0. The presence of phase transitions of-
ten contributes to these issues, due to the disconti-
nuities inherent at first order transitions. These tran-
sitions are often poorly represented in the table due
to poor choices for the location of grid points, lead-
ing to physically stable, but anomalous behavior near
transitions. An example of such a deficiency is shown
on the left side of Fig. 2 for the toy EOS.

In an attempt to mitigate such issues, a set of
best practices has been developed for automatically
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FIGURE 2. Interpolation anomalies in pressure
isotherms, shown as red lines. The left plot shows a stair
step effect along the liquid side of the vapor dome, shown
as a dashed blue line, as obtained from interpolation on a
SESAME table. The right plot shows the same isotherms
but using the adaptive tabulation scheme.

choosing the grid for a wide range SESAME table
to be used with rational interpolation. A similar ap-
proach to that of Ref. [5] is used to choose the tabu-
lation grid. First, one chooses a logarithmic pressure
spacing for the table, which is applied at the critical
density. Typically this will be some division of the
pressure range between the triple and critical points.
Starting with the critical temperature and pressure,
the temperature grid is set to meet the desired pres-
sure spacing at the critical density. Next, whenever
an isotherm crosses a phase boundary, the coexis-
tence densities are added to the density grid. The crit-
ical density and reference density are also included.
Lastly, one augments the density grid with points to
ensure that each isotherm contains an interior point
in a mixed phase region, and that a certain minimum
spacing goal is met for the density grid.

A key motivation to this work is the lack of verifi-
cation for the interpolated values of SESAME tables.
Typically, an EOS modeler will check that certain
paths, such as the Hugoniot, are close to the origi-
nal analytic model, but verification of the complete
table is almost never performed. Instead, EOS mod-
elers tend to increase the table density until they feel
the table is accurate enough. As a side effect one is
often left with very large table sizes.

ADAPTIVE TABULATION

To overcome the issues surrounding SESAME ta-
bles, a redesign appears necessary. Adaptive grids
provide a promising solution as one may optimize
the grid to mitigate the problems described above.
A quad-tree is used as it provides a simple method



FIGURE 3. Schematic of quad-tree interpolation patch
with phase boundary shown as a dotted blue curve. Squares
denote the location of quad-tree nodes. With one phase
boundary present, the interpolation is split into the four
triangles shown by red dashed lines, with additional inter-
polation points shown as red circles.

of adaptivity with a fast look up speed. The algo-
rithm proceeds as follows. For each rectangle in the
quad-tree an error measure is calculated. The rectan-
gle with maximum error is taken as the next one to
subdivide. This continues until the maximum error
of all rectangles is below the desired tolerance.

The error measure is obtained by sampling the in-
terpolation defined on a rectangle and calculating a
three sigma estimate for the maximum relative pres-
sure and internal energy errors. If thermodynamic
consistency or instability is detected, the error mea-
sure is overridden and the rectangle divided further.

The requirements for the interpolation scheme are
that it be computationally efficient, globally contin-
uous, and resistant to instability. For this reason a
piecewise bi-linear interpolation scheme was cho-
sen, using a transfinite rectangular Coon’s patch with
piecewise linear interpolation along the edges [9].
When a single phase boundary crosses the patch, and
the error measure using the rectangular interpolation
is above the desired criteria, the interpolation scheme
is changed. The rectangle is split into four triangles,
based upon the location of the phase boundary, see
Fig. 3. Then, a similar transfinite Coon’s patch is
used to interpolate in each triangle. Note, this only
affects the interpolation in the rectangle. If the trian-
gularinterpolation also fails to meet the error criteria,
then the rectangle is subdivided as before.

RESULTS AND DISCUSSION
Two tables were built to represent the toy EOS, an

adaptive table with a target verification tolerance of
5%, and a rectangular SESAME table using the out-

Temperature
Temperature

ié

Density

Density

FIGURE 4. Interpolation grids for the EOS. Right and
left respectively show a 5% tolerance adaptive grid and a
similarly sized rectangular SESAME grid.

TABLE 1. \Verification statistics for adaptive tabula-
tion at 5% pressure tolerance compared with a similar
sized best-practices, rectangular SESAME table.

Grid type Adaptive  Rectangular
Total grid points 1404 1640
Look up compares 11 (22) 8

% patches w/ P ers 5%  0.0011 0.328
Maximum P error 0.0544 5.80

lined best practices. For the latter table, the logarith-
mic pressure spacing was chosen to give a similar
total number of grid points as in the adaptive table.
The resultant tabulation grids are shown in Fig. 4.
Some statistics for the grids are also shown in Tab. 1.
In particular, the rectangular grid contained around
17% more grid points. The nominal number of com-
parisons needed to find an arbitrgsy— T point in

the grids is also shown. The value for the rectangular
table is determined using a standard bisection search,
while the adaptive grid value is based upon the aver-
age depth of the quad-tree, with the worst case shown
in parenthesis.

To test the verification of the tables, the tabulated
p —T space was divided into a 1000x1000 log-linear
grid. The maximum relative error in pressure was
calculated for each of these regions using a random
100 point sample. Some statistics are shown for the
grids in Tab. 1 and a visual representation of the error
is shown in Fig. 5.

The adaptive grid performs as expected, meeting
the error criterion at all but a handful of test loca-
tions. When it does fail, the maximum error is still
very close to the expected 5%. This is a result of
the table generation process, which uses a statistical
measure of the error to determine when to stop sub-
dividing. The testing procedure resamples the error
on each interpolation patch, and thus it is not unex-
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FIGURE 5. \erification results for SESAME (top) and
adaptive (bottom) tables. The color gradient shows redativ
pressure error. Cyan squares in the bottom plot show points
where the 5% tolerence was not met.

pected that it may sample the tail of the error distribu-
tion differently than when the table was constructed.
These results may also be seen in Fig. 5 where the
shading shows that the error criteria is met, but typi-
cally is close to the 5% limit. The few points where
the criteria are not met are shown as squares.

Verification results for the rectangular table are
significantly different. As seen in Tab. 1, many more
patches fail to meet the error criteria than for the
adaptive table. More significantly, when the crite-
ria is not met, the maximum error tends to be much
larger, implying the table is much less accurate than
the adaptive case in those regions. This is also ev-
ident in Fig. 5, where the lightest locations actu-
ally lay above the high end of the color map scale.
Clearly, the phase boundaries are the troublesome ar
eas. Away from these boundaries the rectangular grid
performs very well.

From the perspective of meeting the 5% error cri-
teria, the rectangular grid over performs and wastes
storage due to its high density grid. Examining the
grids in Fig. 4 shows how the adaptive table over-
comes this issue. Grid density is removed, by pre-
venting subdivision where the interpolation is al-

ready accurate enough. Additionally, triangular sub-
division of the interpolation region allows for the
phase boundaries to be accurately captured, unlike
in the case of the rectangular grid. Interpolation on a
rectangle simply cannot follow general curves with
much accuracy. Thus, even upon further refinement
of the rectangular grid, the errors at the phase bound-
aries persist.

Along the phase boundaries the adaptive grid has
another significant effect. By more accurately cap-
turing the behavior it restores physicality to the tab-
ulated EOS. This may be seen on the right side of
Fig. 2. In contrast to the left side of Fig. 2, the pres-
sure isotherms of the adaptive table do not exhibit the
anomalous stair step effect.
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