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Areas of application of mechanical properties

Waste repositories Carbon sequestration

Injectivity, Flow, and Regional
Brine Management

Impacts of Storage on Natural
and Construction Materials

Geomechanical and

Microseismicity

Geochemical
Reactions

Wellbore Construction and
Mitigation Technologies

Permeablty. Porosity, Wettability among other
factors effecting CO, Trapping
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http://www.netl.doe.gov/technologies/carbon_seq/corerd/storage.html#geologic

http://fen.wikipedia.org/wiki/
Yucca_Mountain_nuclear_waste_repository
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http://www.pentagon-ems.com/products/material/esd-composite-material.html - - - - m—
http://geophysics.ou.edu/solid_earth/notes/seismology/seismo _interior/
seismo_interior.html




How to model muscovite in a simulation

Accurate description of how atoms interact

Clayff: Flexible model for clays, oxides, aqueous ions, brines Q 0
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Cygan, Liang, and Kalinichev (2004) Journal of Physical Chemistry B

Accurate chemical and structural description
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Monoclinic C2/c 2M1 unit cell .
Supercell 8 x 4 x 2 (5376 atoms) " “"““"‘““"*"
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Simulation methods to determine mechanical properties

Molecular dynamics
Sandia’s LAMMPS code
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Non-equilibrium NPT: € =-10 to 10%
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Simulation evolves
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Bulk Modulus and Compressibility

Bulk modulus = -V(oP/dV)r
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Compressibility [GPa™']

Compressibility = -1/ V (6V/oP)t
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Temperature effects are small over pressure ranges studied

aFaust et al., Journal Geophysical Research, 1994




Equilibrium stress-strain curves
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Uniaxial stress strain curves

Compression and tension simulations are conducted at constant strain rate
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Model breaks apart at high strain|




Uniaxial stress strain curves

Compression and tension simulations are conducted at constant strain rate

T = 298 K, tension |
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'Elastic regime
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Calculate Young’s moduli and shear moduli from data within the elastic regime
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Young’s modulus
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Shear modulus
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Structural changes with deformation

L= '°°°1AGP3 —Toamk K-O radial distribution function
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At high pressure see change in first
neighbor peak

This change is reduced at higher
temperatures
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Power spectra - interlayer K+
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Conclusions

Our simulation results matches well with experiment

The clayff force field does a good job at capturing
the mechanical properties of muscovite in the elastic
regime

Temperature does not greatly impact the mechanical
properties of muscovite in the elastic regime

Pressure has a greater effect on the mechanical
properties of muscovite than does temperature
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