
ShyLU: A Hybrid-Hybrid Solver for Multicore Platforms

Sivasankaran Rajamanickam1, Erik G. Boman1, and Michael A. Heroux1,
E-mail:{srajama@sandia.gov, egboman@sandia.gov and maherou@sandia.gov}

1 Sandia National Laboratories.

Abstract—With the ubiquity of multicore processors, it is
crucial that solvers adapt to the hierarchical structure of
modern architectures. We present ShyLU, a “hybrid-hybrid”
solver for general sparse linear systems that is hybrid in two
ways: First, it combines direct and iterative methods. The
iterative part is based on approximate Schur complements
where we compute the approximate Schur complement using
a value-based dropping strategy or structure-based probing
strategy.

Second, the solver uses two levels of parallelism via hybrid
programming (MPI+threads). Our solver is useful both in
shared-memory environments and on large parallel computers
with distributed memory. In the latter case, our solver should
be used as a subdomain solver. We argue that with the
increasing complexity of compute nodes, it is helpful to exploit
multiple levels of parallelism even within a single compute
node.

We show the robustness of ShyLU against other algebraic
preconditioners. ShyLU scales well up to 384 cores for a
given problem size. We compare flat MPI performance of
ShyLU against a hybrid implementation and conclude that on
present multicore nodes flat MPI is better. However, for future
multicore machines (96 or more cores) hybrid/ hierarchical
algorithms and implementations are important for sustained
performance.

I. INTRODUCTION

The general trend in computer architectures is towards
hierarchical designs with increasing node level parallelism.
In order to scale well in these architectures, applications
need hybrid/hierarchical algorithms for the performance
critical components. The solution of sparse linear systems
is an important kernel in scientific computing. A diverse set
of algorithms is used to solve linear systems, from direct
solvers to iterative solvers. A common strategy for solving
large linear systems on large parallel computers, is to first
employ domain decomposition (e.g., additive Schwarz) on
the matrix to break it into subproblems that can then be
solved in parallel on each core or on each compute node.
Typically, applications run one MPI process per core leading
to one subdomain per core as well. A drawback of domain
decomposition solvers or preconditioners is that the number
of iterations to solve the linear system will increase with
the number of subdomains. With the rapid increase in the
number of cores, we argue that one subdomain per core is
no longer a viable approach. However, one subdomain per
node is reasonable since the recent and future increases in
parallelism are and will be primarily on the node. Thus, an

increasingly important problem is to solve linear systems in
parallel on the compute node. In this paper we suggest a
two-level approach on the node. Our hybrid-hybrid method
is “hybrid” in two ways: first, the solver combines direct and
iterative algorithms, and second, we use MPI and threads in
a hybrid programming approach.

We argue that to be scalable and robust it is important
for solvers and preconditioners to use the hybrid approach
in both meanings of the word. A direct solver [1], [2]
is very robust and the BLAS based implementations are
capable of performing near the peak performance of desktop
systems for specific problems. However, they suffer from
high memory requirements and poor scalability in distributed
memory systems. An iterative solver, while highly scalable
and customizable for problem specific parameters, is not
as robust as a direct solver. A hybrid preconditioner can
be conceptually viewed as a middle ground between an
incomplete factorization and a direct solver.

Our first contribution in this paper is a new scalable hybrid
sparse solver, ShyLU (Scalable Hybrid LU, pronounced Shy-
Loo), based on the Schur complement framework. ShyLU is
based on Trilinos[3] and also intended to become a Trilinos
package. It is designed to be a “black box” algebraic solver
that can be used on a wide range of problems. Furthermore,
it is suitable both as a solver on a single-node multicore
workstation and as a subdomain solver on a compute node
of a petaflop system. Our target is computers with many
CPU-like cores, not GPUs.

Second, we revisit every step of the Schur complement
framework to exploit node level parallelism as well as to
improve the robustness of the preconditioner. We introduce
a new probing technique that exploits recent improvements
in parallel coloring algorithms to get a better approximation
of the Schur complement.

Third, we try to answer the question: “When will the
hybrid implementation of a complex algorithm be better
than a pure MPI-based implementation?”. We use ShyLU as
our target “application” as a complex algorithm like linear
solver, with a pure MPI-based implementation and a hybrid
MPI+Threads implementation should be able to provide a
reasonable answer to this question. The answer is dependent
on algorithms, future changes in architectures, problem sizes
and various other factors. We try to address this question for
our specific algorithm and our target applications.

SAND2011-7407C

A. Previous work

Many good parallel solver libraries have been developed
over the last decades; for example, Trilinos, PETSc [6],
[7], and Hypre [8]. These were mainly designed for solving
large distributed systems over many processors. Our focus
is on solving medium-sized systems on a single compute
node. This may be a subproblem within a larger parallel
context. Some parallel sparse direct solvers (e.g., SuperLU-
MT [9], [10] or Pardiso[1]) have shown good performance
in shared-memory environments, while distributed-memory
solvers (for example SuperLU-dist and MUMPS [11], [12])
have limited scalability. Pastix [13] is an interesting sparse
direct solver because it uses hybrid parallel programming
with both MPI and threads. However, any direct solver will
require lots of memory due to fill and they are not ready
to handle the O(100) to O(1000) expected increase in the
node concurrency (in their present form at least). To reduce
memory requirements, incomplete factorizations is a natural
choice. There are only few parallel codes available for
incomplete factorizations in modern architectures. (e.g.,[14],
[?])

Recently, there has been much interest in hybrid solvers
that combine features of both direct and iterative methods.
Typically, they partially factor a matrix using direct methods
and use iterative methods on the remaining Schur comple-
ment. Parallel codes of this type include HIPS [15], MaPhys
[16], and PDSLin [17]. ShyLU is similar to these solvers in a
conceptual way that all these solvers fall into the broad Schur
complement framework described in section II. However,
each of these solvers, including ShyLU, is different in the
choices made at different steps within the Schur complement
framework. Furthermore, we are not aware of any code
that is hybrid in both the mathematical and in the parallel
programming sense. In contrast to the other solvers our
target is a multicore node. See section IV for how these
solvers differ from ShyLU in the different steps.

II. SCHUR COMPLEMENT FRAMEWORK

Our framework is a general way to solve linear systems
based on the Schur complement approach. Much work has
been done in this area; see for example, [18, Ch.14] and the
references therein.

A. Schur complement formulation

Let Ax = b be the system of interest. Suppose A has the
form

A =

(
D C
R G

)
, (1)

where D and G are square and D is non-singular. The Schur
complement after elimination of the top row is S = G−R∗
D−1C. Solving Ax = b then consists of the three steps:

1) Solve Dz = b1.
2) Solve Sx2 = b2 −Rz.

Figure 1. Partitioning and reordering of a (a) nonsymmetric and (b)
symmetric matrix.

3) Solve Dx1 = b1 − Cx2.
where the vector subscripts correspond to the matrix block
rows.

The algorithms that use this formulation to solve the
linear system in an iterative method or a hybrid method
essentially use three basic steps. We like to call this the
Schur complement framework:

Partitioning: The key idea is to permute A to get a D that
is easy to factor. Typically, D is diagonal, banded or block
diagonal and can be solved quickly using direct methods.
As the focus is on parallel computing, we choose D to be
block diagonal in our implementation. Then R corresponds
to a set of coupling rows and C is a set of coupling columns.
See Figure 1 for two such partitioning. The symmetric
case in Figure 1(b) is identical to the Schur complement
formulation. The nonsymmetric case in Figure 1(a) can be
solved using the same Schur complement formulation even
though it appears different.

Sparse Approximation of S: Once D is factored (either
exactly or inexactly), the crux of the Schur complement
approach is to solve for S iteratively. There are several
advantages to this approach. First, S is typically much
smaller than A. Second, S is generally better conditioned
than A. However, S is typically dense making it expensive
to compute and store. All algorithms compute a sparse
approximation of S either to be used as a preconditioner
for an implicit S or for an inexact solve.

Fast inexact solution with S: Once there is an approximate
S there are multiple options to solve using S and then
solve for the entire system. For example, the algorithms can
choose to just iterate on the Schur complement system and
solve exactly for the full linear system, or use an iterative
method for both, using an inner-outer iteration. The options
for preconditioners to S vary as well.

Different hybrid solvers choose different options in the
above three steps, but they tend to follow this framework.

B. Hybrid Solver vs. Preconditioner

Hybrid solvers typically solve for D exactly using a sparse
direct solver. This also provides an exact operator for S.
Note that S does not need to be formed explicitly but the

action of S on a vector can be computed by using the identity
S = G−R∗D−1C. This can save significant memory, since
S can be fairly dense.

We take a slightly different perspective: We design an
inexact solver that may be used as a preconditioner for A.
We do not attempt to scale our “solver” to tens of thousands
of cores, rather we envision it used as a subdomain solver
within a domain decomposition framework or as smoother
within a multilevel preconditioner. As a preconditioner, we
no longer need to solve for D exactly. Also, we don’t need to
form S exactly. If we solve for S using an iterative method,
we get an inner-outer iteration. The inner iteration is internal
to ShyLU, while the outer iteration is done by the user. When
the inner iteration runs for a variable number of iterations,
it is best to use a flexible Krylov method (e.g., FGMRES)
in the outer iteration.

C. Preconditioner Design

As is usual with preconditioners (see e.g., IFPACK [19]),
we split the preconditioner into three phases: (i) Initialize,
(ii) Compute, and (iii) Solve. Initialize() only depends on
the sparsity pattern of A, so may be reused for a sequence
of matrices. Compute() is called if any matrix entry has
changed in value. Solve() approximately solves Ax = b for
a right-hand side b.

Algorithm 1 Initialize
Require: A is a square matrix
Require: k is the desired number of parts (blocks)

Partition A into k parts.
Ensure: Let D be block diagonal with k blocks.
Ensure: Let R be the row border and C the column border.

Algorithm 2 Compute
Require: Initialize has been called.

Factor D.
Compute S̄ ≈ G−R ∗D−1C.

Algorithm 3 Solve
Require: Compute has been called.

Solve Dz = b1.
Solve either Sx2 = b2 −Rz or S̄x2 = b2 −Rz.
Solve Dx1 = b1 − Cx2.

III. NARROW SEPARATORS VS WIDE SEPARATORS

The framework in Section II depends on finding separators
to partition the matrix into the bordered form. The traditional
way to find this separator is to represent the matrix as
graph or hypergraph and find a partitioning of the graph
or hypergraph. Let (V1, V2, S) be a partition of the vertices

V in a graph G(V,E). S is a separator if there is no edge
(v, w) such that v ∈ V1 and w ∈ V2. Separator S is called
a wide separator if any path from V1 to V2 contains at least
two vertices in S. A separator that is not wide is called a
narrow separator. Note that the edge separator as computed
by many of the partitioning packages is a wide separator.

Wide separators were originally used as part of ordering
techniques for sparse Gaussian elimination [?]. The intended
application at that time was sparse direct factorization [?].
We revisit this comparison with respect to hybrid solvers
here.

From the perspective of the graph of the matrix, the
narrow separator is shown in Figure 2(a). The corresponding
wide separator is shown in Figure 2(b). The doubly bordered
block diagonal form of a matrix A when we use a narrow
separator is shown below (for two parts).

Anarrow =


D11 0 C11 C12

0 D22 C21 C22

R11 R12 G11 G12

R21 R22 G21 G22

 (2)

All the Rij blocks and Cij blocks can have nonzeros in
them. As a result, every block in the Schur complement
might require communication when we compute it. For
example, while using the matrix from the narrow separator
Anarrow to compute the S11 block of the Schur complement
we do

S11 = G11 −R11 ∗D−1
1 ∗ C11 + R12 ∗D−1

2 ∗ C21 (3)

Computing the Schur complement in the above form is
expensive due to the communication involved. However, the
doubly bordered block diagonal form for two parts when
we use a wide separator has more structure to it as shown
below.

Awide =


D11 0 C11 0

0 D22 0 C22

R11 0 G11 G12

0 R22 G21 G22

 (4)

Consider that rows of Dij are the interior vertices in part
i and the rows in Rij are boundary vertices in part i then
we observe that all blocks Rij and Cij will be equal to zero
when i 6= j. This follows from the definition of the wide
separator.

As R and C are block diagonal matrices, we can compute
the Schur complement without any communication. For
example, to compute the S11 block of the Schur complement
of Awide we do

S11 = G11 −R11 ∗D−1
1 ∗ C11 (5)

Thus computing S in the wide separator case is fully
parallel. The off-diagonal blocks of the Schur complement

(a) Narrow Separator. (b) Wide Separator.

Figure 2. Wide Separator and Narrow Separator of a graph G.

are equal to the off-diagonal blocks of G. However, the
wide separator can be as much as two times the size of the
narrow separator. This results in a larger Schur complement
system to be solved when using the wide separator. When the
separator was considered as a serial bottleneck (when they
were originally designed for direct solvers) there was a good
argument to use the narrow separators. However, in hybrid
solvers, we solve the Schur complement system in parallel
as well. As a result, while the bigger Schur complement
system leads to increased solve time, the much faster setup
due to increased parallelism offsets the small increase in
solve time. All the experiments in the rest of this work
use wide separators for increased parallelism. Note that the
Schur complement while using the wide separator is similar
to the local Schur complement described in [18].

Even with the parallelism at the MPI level, computing
S11 is itself expensive. Instead of trying to parallelize the
sparse triangular solve to compute the R11 ∗ D−1

1 ∗ C11,
we compute the columns of S in chunks and exploit the
parallelism available from using the multiple right hand sides
in a sparse triangular solve.

IV. IMPLEMENTATION

ShyLU uses an MPI and threads hybrid programming
model even within the node. Notice that in the Schur
complement framework the partitioning and reordering is
purely algebraic. This reordering exposes one level of data
parallelism. ShyLU uses MPI tasks to solve for each Di and
the Schur complement. A further opportunity for parallelism,
is within the diagonal blocks Di. We propose to use a
threaded direct solver, for example, Pardiso [1] or SuperLU-
MT [9], [10], to factor each block Di. The assumption here
is we can use multithreaded direct solvers (or potentially
incomplete factorizations in the future) effectively within a
uniform memory access (UMA) region, where all cores have
equal (fast) access to a shared memory region. Using MPI
between UMA regions help us mitigate the problems with
data placement and non-uniform memory accesses.

In our implementation, we have chosen to use the Epetra
package in Trilinos with MPI for the matrix A. Using
MPI at this level helps us obtain data locality on a non-

uniform access memory access (NUMA) node, and also
allows us to run across nodes, if desired. When combined
with a multithreaded solver for the subproblems, we have
a hybrid MPI-threads solver. This is a very flexible design
that allows us to experiment with hybrid programming and
the trade-offs of MPI vs. threads. In the one extreme case,
we could partition and use MPI for all the cores and use
no threads. The opposite extreme case is to only use the
multithreaded direct solver. We expect the best performance
to lie somewhere in between. A reasonable choice is to
partition for the number of sockets or UMA regions. We
will study this in Section VI.

Our framework consists of partitioning, sparse approxi-
mation of the Schur complement, and fast, inexact (or exact)
solution of the Schur complement. The first two steps only
have to be done once in the setup phase. We now discuss
our implementation for each of these steps in more detail.

A. Partitioning

We use partitioning to find a D that has a block structure
and is suitable for parallel solution. To exploit locality (on
the node), we partition A into k parts, where k > 1 may
be chosen to correspond to number of cores, sockets, or
UMA regions. The partitioning induces the following block
structure:

A =

(
D C
R G

)
, (6)

where D again has a block structure. As shown in Figure 1
we have two cases. In the symmetric case, we use a symmet-
ric permutation PAPT to get a doubly bordered block form.
In this case, D = diag(D1, . . . , Dk) is a block diagonal
matrix, R is a row border, and C is a column border. In
the nonsymmetric case, there is no symmetry to preserve
so we allow nonsymmetric permutations. Therefore, instead
we find PAQ with a singly bordered block diagonal form
(Figure 1(b)). A difficulty here is that the “diagonal” blocks
are rectangular, but we can factor square submatrices of full
rank and form R, the row border after the factorization. We
can use a direct factorization that can handle rectangular
matrices. There are no multithreaded direct solvers that can

handle this case now. We focus on the structurally symmetric
case here. In our experiments for unsymmetric matrices, we
apply the permutation in a symmetric manner to form the
DBBD form.

Several variations of graph partitioning can be used to
obtain block bordered structure. Traditional graph parti-
tioning attempts to keep the parts of equal size while
minimizing the edge cut. We will consider the edge separator
as our separator. The other hybrid solvers we know (see
Section I) use some form of graph partitioning. Hypergraph
partitioning is a generalization of graph partitioning that is
also well suited for our problem because it can minimize the
border size directly. Also, it naturally handles nonsymmetric
problems, while graph partitioning requires symmetry. Thus,
we decided to use hypergraph partitioning in both the sym-
metric and nonsymmetric cases. We used the Zoltan/PHG
partitioner [21] via the Isorropia package.

B. Diagonal block solver

The blocks Di are relatively small and will typically be
solved on a small number of cores, say in one UMA region.
Either exact or incomplete factorization may be used. We
choose to use a sparse direct solver. Our implementation
uses Pardiso [1] from Intel MKL, which is a multithreaded
solver. Since the direct solver typically will run within a
single UMA region, it does not need to be NUMA-aware.
ShyLU uses the Amesos package[22] in Trilinos to interface
with the direct solvers. This enables us to switch between
any direct solver supported by the Amesos package. The
other codes we have mentioned in Section I all use a serial
direct solver in this step.

C. Approximations to the Schur Complement

The exact Schur complement is S = G − R ∗ D−1C.
In general, S can be quite dense and is too expensive to
store. There are two ways around this: First, we can use S
implicitly as an operator without ever forming S. Second,
we can form and store a sparse approximation S̄ ≈ S. As
we will see, both approaches are useful.

The Schur complement itself has a block structure

S =


S11 S12 . . . S1k

S21 S22 . . . S2k

...
...

...
Sk1 Sk2 . . . Skk

 (7)

where it is known that the diagonal blocks Sii are usually
quite dense but the off-diagonal blocks are mostly sparse
[18]. Note that the local Schur complements Sii can be
computed locally by Sii = Gii − Ri ∗ D−1

ii Ci. A popular
choice is therefore to use the local Schur complements as a
block diagonal approximation. As we use wide separators as
discussed above all the fill is in our local Schur complement
and all the offdiagonal blocks have the same sparsity pattern

as the corresponding Gij . To save storage, the local Schur
complements themselves need to be sparsified [23], [17].

We investigate two different ways to form S̄ ≈ S:
Dropping and Probing. Both methods attempt to form a
sparser version of S while preserving the main properties
of S.

1) Dropping (value-based): With dropping we only keep
the largest (in magnitude) entries of S. This is a common
strategy and was also used in HIPS and PDSLin. Symmetric
dropping is used in [16]. When forming S = G−R∗D−1C,
we simply drop entries less than a given threshold. We use a
relative threshold, dropping entries that are smaller relative
to the large entries. Since S can be quite dense, we only form
a few columns at a time and immediately sparsify. Note we
do not drop entries based on U−1C or R∗U−1 where L and
U are the LU factors of D, as in HIPS or PDSLin. Since
our dropping is based on the actual entries in S, we believe
our approximation S̄ is more robust. However, this can be
very expensive when there is not much to drop in S.

2) Probing (structure-based): Since dropping may be
expensive in some cases, we also implemented probing.
Probing was developed to approximate interfaces in domain
decomposition[24], which is also a Schur complement. In
probing, we prescribe the sparsity pattern of S̄ ≈ S. Then
we compute a set of probing vectors, V , based on S̄. This
gives rise to a coloring problem, where the number of
colors corresponds to the number of probing vectors needed.
Finally, we apply S = G − RD−1C as an operator to the
probing vectors V to obtain SV , which then gives us the
numerical values for S̄. Note we never need to form S
explicitly. Generally, the sparser S̄, the fewer the number
of probing vectors needed. Choosing the sparsity pattern of
S̄ can be tricky. For PDE problems where the values in S
decay away from the diagonal, a band matrix is often used
[24]. For example, when we are looking for a tridiagonal
approximation of the Schur complement we color the pattern
of a tridiagonal matrix to get three colors. Then the the three
probing vectors are

V =



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
...

...
...


(8)

For every column k in the Schur complement there is
an entry 1 in the row k of the vector corresponding to its
color in V . S ∗ V gives us the entries corresponding to the
tridiagonal matrix. However, a purely banded approximation
will lose any entries in S (and G) that are outside the
bandwidth. To strengthen our preconditioner, we include the
pattern of G in the probing pattern, which is simple to do
as G is known a priori. To summarize, the pattern of S̄ is
pattern of B ∪G, where B is a banded matrix.

(a) Structure of typical banded probing for S̄, B. (b) Structure of G submatrix. (c) Structure of S̄ = B∪G for ShyLU’s probing.

Figure 3. A sketch of the pattern used for probing in ShyLU.

Figure 3 shows a sketch of how ShyLU’s probing tech-
nique corresponds to traditional probing techniques. Fig-
ure 3(a) shows the structure of a typical banded probing
assuming we are looking for 5% of the diagonals. To this
structure, our algorithms also includes the structure of G
from the reordered matrix (Figure 3(b)), for probing. As
result the structure for the probing is as shown in Figure 3(c).
The idea behind adding G to the structure of S̄ is that any
entry that is originally part of G is important in S̄ as well.
Experimental results showed a bandwidth of 5% seems to
work well for most problems.

Probing for a band structure is straight-forward since the
probing vectors are trivial to compute. In our approach, we
need to use graph coloring on the structure of S̄ (which in
our case is B ∪G) to find the probing vectors. We use the
Prober in Isorropia package of Trilinos which in turn uses
the parallel graph coloring algorithm [?] in Zoltan. Probing
for a complex structure is computationally expensive, but we
save quite a lot in memory as the storage required for the
Schur complement is the size of G with a few diagonals.
However, for problems where the above discussed structure
of S̄ is not sufficient, the more expensive dropping strategy
can be used.

D. Solving for the Schur Complement
As in the steps before, there are several options for solving

for the Schur complement as well. Recall that we have
formed S̄, a sparse approximation to S. A popular approach
in hybrid methods is to solve the Schur complement system
iteratively using S̄ as a preconditioner. In each iteration, we
have to apply S, which can be done implicitly without ever
forming S explicitly. Note that implicit S requires sparse
triangular solves for D in every iteration. We call this the
exact Schur complement solver.

As we only need an inexact solve as a preconditioner,
we also have a different option. we can simply solve for S̄
instead of for S. Now, even S̄ is large enough that it should

be solved in parallel. We solve for S̄ iteratively using yet
another approximation S̃ ≈ S̄ as a preconditioner for S̄.
It should be easy to solve for S̃ in parallel. In practice, S̃
can be quite simple, for example, diagonal (Jacobi) or block
diagonal (block Jacobi). The main difference from the exact
method is that we do not use the Schur complement operator
even for matrix vector multiplies in the inner iteration.
Instead we use S̄. We call this approach the inexact Schur
complement solver. ShyLU can do both the exact and inexact
solve for the Schur complement. We compare the robustness
of both these approaches in Section VI.

Once the preconditioner (S̄ or S̃) and the operator for
our solve (either an implicit S or S̄) is decided there are
two options for the solver. If D is solved exactly and an
implicit S is the operator it is sufficient to iterate over S
(as in [15]) and not on A. Instead any scheme that uses an
inexact solve for D or an iterative solve on S̄ or both implies
an inner-outer iterative method for the overall system. It is
not sufficient to iterate on S but it is required to iterate on
A. This is usually fine for a subdomain solver and might be
required when we may do inexact factorization (instead of a
direct factorization) in D as well, in the future. It is because
of this reason ShyLU uses an inner-outer iteration, where
the inner iteration is only on the Schur complement part.
The inner iteration (over S or S̄) is internal in the solver
and invisible to the user, while the outer iteration (over A)
is controlled by the user. We expect a trade-off between the
inner and outer iterations. That is, if we iterate over S we
need few outer iterations while if we iterate on S̄ we may
need more outer iterations but fewer inner iterations.

By default, we do 30 inner iterations or to an accuracy of
10−10 whichever comes first.

E. Parallelism
Our implementation of the Schur complement framework

is parallel in all three steps. We use Zoltan’s parallel hy-
pergraph partitioning to partition and reorder the problem.

The block diagonal solvers are multithreaded in addition to
the parallelism from the MPI level. We use parallel coloring
from Zoltan to find orthogonal columns in the structure of
S̄ and sparse matrix vector multiplication to do the probing.
The Schur complement solve uses our parallel iterative
solvers for solving for S or S̄ which use a multithreaded
matrix vector multiplication.

V. PARALLEL NODE LEVEL PRECONDITIONING

ShyLU is a hybrid solver designed for the multicore
node and uses MPI and threads even within the node. This
is different from other approaches where MPI + threads
model spans across the entire system, not just the node, and
there is only one MPI processes per node. We believe one
MPI process per socket or UMA region is a more practical
approach for scalability at least in the near term. However,
we would like to use the idea that the subdomain, in a
domain decomposition method, itself can span several MPI
processes. When there are more than MPI processes per node
and a we restrict the number of subdomains to one per node
and ShyLU will be used as the subdomain solver on the
node. For massively parallel computing, we expect ShyLU
to be used only for the subdomains.

Nothing prevents us from using ShyLU across the entire
system as it is based on MPI, however the separator size (and
thus the Schur complement) will grow with the number of
parts. While using threads alleviates this problem to a cer-
tain extent, we recommend using a domain decomposition
method with little communication (e.g., additive Schwarz)
at the global level, and ShyLU on the subdomains. Such
a scheme will exploit three levels of parallelism, where the
top level requires little communication while the lower levels
require more and more communication. In essence, we adapt
the solver algorithm to the machine architecture. We believe
this is a good design for future exascale computers that will
be hierarchical in structure.

The Schur complement framework and the MPI+threads
programming model also allow ShyLU be fully flexible in
terms of how applications use it. We envision ShyLU to be
used by the applications in three different modes:

1) Applications that now run one MPI process per core
remain that way, the additive Schwarz preconditioner
(which will use ShyLU on subdomains) can define the
subdomains as one per node and transform the matrix
for ShyLU.

2) When applications start one MPI process per UMA
region in the near future, a simple MPI Comm Split()
can map all the MPI processes in a node to ShyLU’s
MPI processes. A subdomain will still be defined as
one per node.

3) When applications start one MPI process per node,
additive Schwarz will use a threads-only ShyLU.

Thus the MPI+threads programming model in ShyLU’s
design helps make the application migration to the multicore

Figure 4. Cross-section of 3D unstructured mesh on an irregular domain.

systems smooth depending on how the applications want to
migrate.

VI. RESULTS

We perform three different set of experiments. First, we
wish to test robustness of ShyLU compared to other common
algebraic preconditioners. Second, we study ShyLU perfor-
mance on multicore platforms, and in particular the trade-
off between flat MPI vs. hybrid models. This study will also
look at performance of ShyLU while doing strong scaling.
Third, we study weak scaling of ShyLU on both 2D and 3D
problems.

A. Experimental setup

We have implemented ShyLU in C++ within the Trili-
nos [3] framework. We leverage several Trilinos packages,
in particular:

1) Epetra for matrix and vector data structures and ker-
nels.

2) Isorropia and Zoltan for matrix partitioning and prob-
ing.

3) AztecOO and Belos for iterative solves (GMRES).
We use two test platforms. The first is Hopper, a Cray XE6

at NERSC. Hopper has 6392 nodes, each with two twelve-
core AMD MagnyCours processors running at 2.1 GHz.
Thus, each node has 24 cores and is a reasonable prototype
for future multicore nodes. Furthermore, the hopper system
is attractive to us because of its NUMA properties. The 24
cores in a node are in fact four six-core UMA sets. We use
hopper for all our strong scaling and weak scaling studies.
Our other test platform is an eight-core (dual-socket quad-
core) Linux workstation that represents current multicore
systems. We use this workstation for our robustness experi-
ments.

All experimental results show the product of inner and
outer iterations that will be seen by the user of ShyLU.

Table I
COMPARISON OF NUMBER OF ITERATIONS OF SHYLU DROPPING AND PROBING WITH EXACT SOLVE, SHYLU DROPPING WITH INEXACT SOLVE AND

HIPS FOR MATRICES FROM UF COLLECTION. A DASH INDICATES NO CONVERGENCE.

Matrix Name N Symmetry ShyLU Dropping ShyLU Probing ShyLU Dropping HIPS
Exact Schur Exact Schur Inexact Schur

venkat50 62.4K Unsymmetric 12 76 - 219
TC N 360K 360K Symmetric 32 82 17 -
Pres Poisson 14.8K Symmetric 14 26 14 38

FEM 3D thermal2 147K Unsymmetric 3 6 3 5
bodyy5 18K Symmetric 3 5 3 42

Lourakis bundle1 10K Symmetric 7 18 7 12
af shell3 504K Symmetric 50 - 39 516

Hamm/bcircuit 68.9K Unsymmetric 6 6 4 -
Freescale/transient 178.8K Unsymmetric 88 - - -

Sandia/ASIC 680ks 682K Unsymmetric 4 34 2 7

When there are many tunable parameters there are two ways
to do experiments. Always choose the best parameters for
each problem, always use the best parameters for the entire
solver. All the experiments in this section use solver specific
parameters and there is no tuning for a particular problem.
For probing we add 5% of diagonals to the structure of G.
For dropping, our relative dropping threshold is 10−3. We
use 30 inner iterations or 10−7 relative residual whichever
comes first and 500 outer iterations or 10−7 relative residual
whichever comes first. This is fully utilized when we use the
inexact Schur complement.

B. Robustness

We validate the different methods in ShyLU by compar-
ing it to HIPS [15] hybrid solver. We use three different
variations of ShyLU, approximations based on dropping
and probing with the exact Schur complement solver and
approximations based on dropping and the inexact Schur
complement solver. All three approaches have tunable pa-
rameters that can be difficult to choose. We decided to use a
fixed dropping/probing tolerance in all our tests. The relative
threshold for dropping is 10−3. We believe this reflects how
a typical user would use the code. Similarly, we tested HIPS
preconditioner with fixed settings same as ShyLU, but we
used 1000 as the maximum number of iterations. Our goal
is to demonstrate the robustness of ShyLU compared to
one other hybrid solver that is commonly used today. The
number of iterations should not be compared directly, since
the fill and work differ in the various cases. The methods
can be made comparable by tuning the knobs. However, we
have used the parameters as they are used in our various
applications.

We chose ten sparse matrices from a variety of application
areas, taken from the University of Florida sparse matrix
collection [25]. We added one test matrix from a Sandia
application, TC N 360K. The results are shown in Table I.
We see that the dropping approximation with the exact
Schur complement is the most robust approach among all
the approaches, including HIPS, in the sense it has fewer
failures. This has been observed in the past by others as

well. Generally, the drop-tolerance version requires fewer
iterations (though not necessarily less run time) than the
probing version.

A dash indicates that GMRES failed to converge to the
desired tolerance within 500 iterations for ShyLU and 1000
iterations for HIPS. Note that the matrix af shell3 has been
named as a horror matrix in the past as it is difficult for
various preconditioners. ShyLU does well in this matrix
when compared with HIPS. We expect HIPS could solve
these problems by changing the drop tolerance, but we used
reasonable values and we used them consistently between
the two solvers.

We further observe that the dropping version is more
robust than the probing version, as it solved all 10 test
problems while the probing version failed in 2 out of 10
cases. The inexact approach, as one would expect, is not
as robust as the exact approach with dropping. However, it
converged faster when it worked. HIPS fails to converge for
three of our test problems and when it converges takes the
same or more iterations than ShyLU.

C. MPI+threads vs MPI performance

We implemented ShyLU with MPI at the top level. Each
MPI process corresponds to a diagonal block Di. We used
multi-threaded MKL-Pardiso as the solver for Di blocks.
We wish to study the trade-off between flat MPI and hybrid
models. Our design allows us to run any combination of MPI
processes and threads. Note that when we vary the number of
MPI processes, we also change the number of Di blocks so
the preconditioner changes as well. Thus, what we observe in
the performance is a combined effect of changes in the solver
algorithm and in the programming model (MPI+threads).

Initially, we ran on one node of Hopper (24 cores).
However, the number of cores on a node is increasing
rapidly. We want to predict performance on future multicore
platforms with hundreds of cores. We simulate this by
running ShyLU on several compute nodes. Since we use
MPI even within the node, ShyLU also works across nodes.
We expect future multicore platforms to be hierarchical with
highly non-uniform memory access and running across the

(a) Dropping (b) Probing

Figure 5. Strong Scaling: ShyLU’s dropping and probing methods for a matrix of size 360K. Solve Time shown for MPI tasks x Threads.

Table II
STRONG SCALING AND HYBRID VS FLAT MPI PERFORMANCE: SOLVE
TIME IN SECONDS (#ITERATIONS) FOR SHYLU DROPPING METHOD TO

SOLVE A LINEAR SYSTEM OF SIZE 360K.

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Cores)
1 (24) 19.6 (79) 17.9 (91) 11.8 (122) 8.3 (144)
2 (48) 14.6 (115) 12.3 (122) 7.0 (144) 6.9 (196)
4 (96) 8.3 (122) 7.2 (144) 5.3 (196) 6.0 (227)

8 (192) 6.4(176) 5.2(196) 3.9(227) 6.9 (332)

nodes will reasonably simulate future systems. We expect
the performance figures for more than 24 cores to get better.
However, we do not know how much MPI and threads
performance are going to get better. Assuming they improve
at the same rate, we compare the performance of the MPI-
only code with hybrid code to understand the possible
differences in future systems.

For this experiment we used a 3D finite element dis-
cretization of Poisson’s equation on an irregular domain,
shown in Figure 4. The matrix dimension was 360K×360K

We use the drop-tolerance version of ShyLU for our first
set of tests. For each node with 24 cores, we tested the
following configurations of MPI processes × threads: 4×6,
6 × 4, 12 × 2, and 24 × 1. The results for run-time and
iterations are shown in Table II. More than 6 threads per
node is not a recommended configuration for hopper so those
results are not shown in Table II. The solve time is also
shown in Figure 5(a).

There are several interesting observations. First, we see
that although the number of iterations increase with the
number of MPI processes (going across the rows in Table II),
the run times may actually decrease. On a single node, we
see that the all-MPI version (24x1) is fastest, even though
it uses more iterations.

Table III
STRONG SCALING AND HYBRID VS FLAT MPI PERFORMANCE: SOLVE
TIME IN SECONDS (#ITERATIONS) FOR SHYLU PROBING METHOD TO

SOLVE A LINEAR SYSTEM OF SIZE 360K.

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Cores)
1 (24) 17.1 (64) 15.4 (70) 9.4 (83) 8.7 (97)
2 (48) 13.7 (76) 9.7 (83) 6.7 (97) 6.3 (114)
4 (96) 8.8 (98) 6.3 (97) 4.8 (114) 6.9 (148)

8 (192) 5.7 (111) 4.6 (114) 4.5(148) 9.3 (218)

Table IV
STRONG SCALING AND HYBRID VS FLAT MPI PERFORMANCE: SOLVE
TIME IN SECONDS (#ITERATIONS) FOR SHYLU DROPPING METHOD TO

SOLVE A LINEAR SYSTEM OF SIZE 720K.

MPI Processes x Number of Threads in
each node

Nodes 6x4 12x2 24x1
(Cores)
2 (48) 25.1(90) 15.0(104) 11.5(115)
4 (96) 13.8(104) 9.2(115) 6.2(130)
8 (192) 9.5(115) 5.7(130) 5.1(139)

16 (384) 5.1(130) 3.2(139) 4.8(177)

Second, we see that, as we add more nodes, the run times
decrease much more rapidly for the hybrid configurations.
For example, with four nodes, the 12x2 configuration gives
the fastest solve time. This is good news for hybrid methods
as they can take advantage of the node level concurrency. We
believe that this is mainly due to the subproblems getting
smaller. We conjecture that using more threads would be
helpful on smaller problem sizes per core.

To understand how the algorithmic choices affect our
strong scaling results we also repeated the experiment with
the same 360Kx360K problem with probing. The time for
the solve is shown in Figure 5(b). The results are almost
identical to the dropping method. The MPI only version

Figure 6. Comparing flat MPI vs MPI+threads vs Problem size per
subdomain.

started performing poorly at 96 cores. At 192 cores any
MPI+thread combination beats flat MPI. However, MPI only
is still the best choice at 24 cores. The number of iterations
for this experiment is shown in Table III. We can see that
the number of iterations for the probing method is better
than the dropping method.

To verify our conjecture, that the size of the problem in
each subdomain is important for hybrid performance, we
repeated the experiment, this time with a larger problem
720Kx720K. We did not use the 4x6 configuration as it
was the slowest in our previous experiment. The results
are shown in Table IV. Note that ShyLU scales well up
to 384 cores. Furthermore, we see that the crossover point
where MPI+threads beats flat MPI is different for this larger
problem (384 cores). The result can be seen clearly in
Figure 6 where we compare the 12x2 case against 24x1 for
both the problems (360K and 720K). When the problem size
per subdomain is about 3500 unknowns the performance is
almost the same for all four cases. As the problem size per
subdomain gets smaller the hybrid programming model gets
better.

As shown above, the results can vary even for our solver
algorithm, based on the problem, and other parameters.
However, in our problems we see, as the available cores
increase, and the size of the problems get smaller, hybrid
solver beats flat MPI based solver.

D. Strong scaling

We can also get strong scaling results by looking at a
column at a time at the Tables II – IV. In the 360K
problem’s dropping case, the 4 × 6 configuration gives a
speedup of 2.3 going from one to four nodes, while the
24×1 only gave a speedup of 1.4. Although the first is quite
decent when one takes the communication across nodes into
account, one should keep in mind that ShyLU was primarily
intended to be a fast solver on a single node. The results are

Table V
SHYLU (PROBING) WEAK SCALING RESULTS: TIMING IN SECONDS

(#ITERATIONS) FOR 2D FINITE ELEMENT PROBLEM.

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Problem Size)

1 (60K) 0.25(10) 0.19(10) 0.35(26) 0.21(11)
2 (120K) 0.31(11) 0.22(10) 0.40(26) 0.61(26)
4 (240K) 0.33(11) 0.67(26) 0.20(12) 0.74(26)
8 (480K) 0.41(11) 0.29(11) 0.60(26) 0.82(26)

Table VI
SHYLU (DROPPING) WEAK SCALING RESULTS: TIMING IN SECONDS

(#ITERATIONS) FOR 2D FINITE ELEMENT PROBLEM.

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Problem Size)

1 (60K) 0.37(17) 0.31(18) 0.20(22) 0.39(27)
2 (120K) 0.48(20) 0.51(26) 0.30(27) 0.50(30)
4 (240K) 0.82(29) 0.49(25) 0.38(28) 0.44(31)
8 (480K) 0.83(29) 0.66(30) 0.44(30) 0.55(32)

similar when we go to eight nodes (192 cores) too. The best
scaling the hybrid model can achieve is 3.4 while flat MPI
is able to get a speedup of 1.2 for the dropping method.
The 6x4 and 12x2 configurations in the 720K problem size
case (Table IV) achieve a speed up of 4.92 and 4.68 going
from 48 to 384 cores. Flat MPI gained a speed up of 2.39
for this case. Overall, ShyLU is able to scale upto 384 cores
reasonably well.

One should also note that the MPI+threads has allowed us
to reduce the iteration creep that we would expect to see in
many precondtioners as we try to scale the preconditioner.
For example, in Table II, we can see that the configuration of
8 nodes with, 12 MPI processes and 2 threads in each node
and the configuration of 4 nodes with 24 MPI processes 1
thread in each node gives us the same number of iterations -
227. However, the former is using the two threads for better
scalability and takes only 65% of the time.

E. Weak scaling

We perform weak scaling experiments on both 2D and 3D
problems where we keep the number of degrees of freedom
(matrix rows) per core constant. Since ShyLU is a two-level
hybrid solver, we expect the performance to be somewhere
between a direct and a typical iterative solver.

Our 2D test problem is a finite element discretization
of an elliptic PDE on a structured grid but with random
coefficients, generated in Matlab by the command
A = gallery(’wathen’,nx,ny). We vary the num-
ber of nodes from one to eight. Again, we designed ShyLU
to be run within a node but we want to demonstrate scaling
beyond 24 cores, so we run our experiments across multiple
nodes.

Table VII
SHYLU (DROPPING) WEAK SCALING RESULTS: TIMING IN SECONDS

(#ITERATIONS) FOR THE 3D PROBLEM.

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Problem)

(Size)
1 (90K) 3.0(47) 2.53(54) 1.76(67) 1.37(73)

2 (180K) 4.55(71) 3.93(80) 2.78(95) 2.41(110)
4 (360K) 8.34(122) 7.25(144) 5.31(196) 6.09(227)
8 (720K) 10.30(103) 9.59(115) 5.78(130) 5.17(139)

We see in Tables V–VI that both run time and number of
iterations increase slowly with the number of cores (as we
go down the columns). The dropping version demonstrates a
smooth and predictable behavior, while the probing version
has sudden jumps in number of iterations and time. We
conjecture that this is because the preconditioner is sensitive
to the probing pattern. For the dropping version, the 12x2
configuration with 12 MPI processes and 2 threads per node
is consistently the best.

Our 3D test problem is a finite element discretization of
an elliptic PDE on the unstructured grid show in Figure 4.
The weak scaling results for this problem are shown in
Table VII. We observe that going from 1 to 8 nodes, the
number of iterations roughly doubles while the run time
roughly triples. Although worse than the perfect scaling that
multigrid methods may be able to achieve, this is much
better than the O(n2) operations scaling by general sparse
direct solvers. ShyLU’s typical usage as a subdomain solver
also places more emphasis on strong scaling than weak
scaling, as the problem size per node is not growing as fast
as the node concurrency. We conclude that ShyLU is a good
subdomain solver for problems of moderate size and scales
quite well up to 384 cores.

VII. FUTURE WORK

We plan several improvements in ShyLU. Many of these
deal with combinatorial issues in the solver algorithm.
First, we intend to extend the code to handle structurally
nonsymmetric problems with unsymmetric permutations. We
can use the hypergraph partitioning and permutation to
singly bordered block form as shown in Figure 1. However,
this requires a multithreaded direct solver that can handle
rectangular blocks.

Second, we wish to study the trade-off between load
imbalance in the diagonal blocks and the size of the Schur
complement. By allowing more imbalance in the diagonal
blocks, the partitioner can usually find a smaller block
border. We can also incorporate a coarse solve to improve
the scalability even better.

We have also observed that the load balance in the system
for the inner solve (S) may be poor even though the load
balance for the outer problem (A) is good. Furthermore,

it is not sufficient to balance the interior vertices in our
partitioning, but ShyLU would require the boundary vertices
to be balanced as well as that corresponds to the number
of triangular solves and matrix vector multiplies while
constructing the Schur complement. We believe this issue
poses a partitioning problem with multiple constraints and
objectives, and cannot be adequately handled using standard
partitioning models.

Finally, we plan to integrate ShyLU as a subdomain
solver within a parallel domain decomposition framework.
This would comprise a truely hierarchical solver with three
different layers of parallelism in the solver.

We remark that none of these issues are specific to ShyLU
and most also apply to other hybrid solvers. Discussions with
the PDSLin developers have confirmed that they face similar
issues. Thus, research into these combinatorial problems
may help advance a whole class of solvers.

VIII. CONCLUSIONS

We have introduced a new hybrid-hybrid solver, ShyLU.
ShyLU is hybrid both in the mathematical sense (direct
and iterative) and in the parallel computing sense (MPI
+ threads). ShyLU is both a robust linear solver and a
flexible framework that allows researchers to experiment
with algorithmic options. We introduced two such options, a
new probing technique and an inexact solver and compared
them to the traditional dropping based exact methods. Per-
formance results show ShyLU can scale well for up to 384
cores in the hybrid mode for a given problem size.

We also studied the question, that given a complex al-
gorithm, with a MPI-only implementation and hybrid (MPI
+Threads) implementation, for a fixed set of parameters: Can
the hybrid implementation beat the flat MPI implementation?
Empirical results on a 24-core MagnyCours node show that
it is advantageous to run MPI on the node. This is not sur-
prising since MPI gives good locality and memory affinity.
However, we project that for applications and algorithms
with smaller problem size per domain, MPI-only works well
up to about 48 cores, but for 96 or more cores hybrid meth-
ods are faster. The crossover point where the hybrid model
beats MPI depends on the problem size per subdomain. We
conclude that MPI-only solvers is a good choice for today’s
multicore architectures. However, considering the fact that
the number of cores per node is increasing steadily and
memory architectures are changing to favor core-to-core data
sharing, hybrid/hierarchical algorithms and implementations
are important for future multicore architectures.

ACKNOWLEDGMENT

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Mar-
tin, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

The authors thank the Department of Energy’s Office
of Science and the Advanced Scientific Computing Re-
search (ASCR) office for financial support. This research
used resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the
Office of Science of the DOE under Contract No. DE-AC02-
05CH11231.

REFERENCES

[1] O. Schenk and K. Gärtner, “Solving unsymmetric sparse
systems of linear equations with PARDISO,” Journal of
Future Generation Computer Systems, vol. 20, no. 3, pp. 475–
487, 2004.

[2] X. S. Li and J. W. Demmel, “Superlu-dist: A scalable
distributed-memory sparse direct solver for unsymmetric
linear systems,” ACM Transactions on Mathematical
Software, vol. 29, no. 2, pp. 110–140, Jun. 2003. [Online].
Available: http://doi.acm.org/10.1145/779359.779361

[3] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra,
J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P.
Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist,
R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S.
Stanley, “An overview of the trilinos project,” ACM Trans.
Math. Softw., vol. 31, no. 3, pp. 397–423, 2005.

[4] M. A. Heroux, “Trilinos home page.” 2011, http://trilinos.
sandia.gov.

[5] S. Balay, W. Gropp, L. McInnes, and B. Smith, “PETSc home
page,” 1998, http://www.mcs.anl.gov/petsc.

[6] ——, “PETSc 2.0 users manual,” Argonne National Labora-
tory, Tech. Rep. ANL-95/11 - Revision 2.0.22, 1998.

[7] ——, “Efficient management of parallelism in object oriented
numerical software libraries,” in Modern Software Tools in
Scientific Computing, E. Arge, A. M. Bruaset, and H. P.
Langtangen, Eds. Birkhauser Press, 1997, pp. 163–202.

[8] R. D. Falgout and U. M. Yang, “HYPRE: A library of high
performance preconditioners,” Lecture Notes in Computer
Science, vol. 2331, pp. 632–??, 2002.

[9] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An
asynchronous parallel supernodal algorithm for sparse
gaussian elimination,” SIAM J. Matrix Anal. Appl., vol. 20,
pp. 915–952, July 1999. [Online]. Available: http://dx.doi.
org/10.1137/S0895479897317685

[10] X. S. Li, “An overview of superlu: Algorithms,
implementation, and user interface,” ACM Trans. Math.
Softw., vol. 31, pp. 302–325, September 2005. [Online].
Available: http://doi.acm.org/10.1145/1089014.1089017

[11] P. Amestoy, I. Duff, J.-Y. L’Excellent, and J. Koster, MUl-
tifrontal Massively Parallel Solver (MUMPS Versions 4.3.1)
Users’ Guide, 2003.

[12] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent,
and J. Koster, “MUMPS home page,” 2003,
http://www.enseeiht.fr/lima/apo/MUMPS.

[13] P. HENON, P. RAMET, and J. ROMAN, “PaStiX: A parallel
sparse direct solver based on a static scheduling for mixed
1d/2d block distributions,” ser. Lecture Notes in Comput. Sci.,
S. Verlag, Ed., vol. 1800, 2000, pp. 519–525.

[14] D. Hysom and A. Pothen, “A scalable parallel algorithm for
incomplete factorization,” SIAM J. on Sci. Comp., vol. 22,
no. 6, pp. 2194–2215, 2001.

[15] J. Gaidamour and P. Henon, “A parallel direct/iterative solver
based on a schur complement approach,” Computational
Science and Engineering, IEEE International Conference on,
vol. 0, pp. 98–105, 2008.

[16] E. Agullo, L. Giraud, A. Guermouche, and J. Roman, “Paral-
lel hierarchical hybrid linear solvers for emerging computing
platforms,” Comptes Rendus Mecanique, vol. 339, pp. 96–
103, 2011.

[17] I. Yamazaki and X. S. Li, “On techniques to improve
robustness and scalability of a parallel hybrid linear solver,”
in Proceedings of the 9th international conference on
High performance computing for computational science, ser.
VECPAR’10. Berlin, Heidelberg: Springer-Verlag, 2011, pp.
421–434. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1964238.1964281

[18] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
SIAM, 2003.

[19] M. Sala and M. Heroux, “Robust algebraic preconditioners
with IFPACK 3.0,” Sandia National Laboratories, Tech. Rep.
SAND-0662, February 2005.

[20] I. S. Duff and J. A. Scott, “A parallel direct solver for
large sparse highly unsymmetric linear systems,” ACM Trans.
Math. Software, vol. 30, no. 2, pp. 95–117, 2004.

[21] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and
U. Catalyurek, “Parallel hypergraph partitioning for scientific
computing,” in Proc. of 20th International Parallel and Dis-
tributed Processing Symposium (IPDPS’06). IEEE, 2006.

[22] M. Sala, K. S. Stanley, and M. A. Heroux, “On the design of
interfaces to sparse direct solvers,” ACM Trans. Math. Softw.,
vol. 34, pp. 9:1–9:22, March 2008. [Online]. Available:
http://doi.acm.org/10.1145/1326548.1326551

[23] L. Giraud, A. Haidar, and Y. Saad, “Sparse approximations
of the schur complement for parallel algebraic hybrid linear
solvers in 3d,” Numerical Mathematics: Theory, Methods and
Applications, vol. 3, no. 3, pp. 276–294, 2010.

[24] T. F. C. Chan and T. P. Mathew, “The interface probing
technique in domain decomposition,” SIAM J. Matrix Anal.
Appl., vol. 13, pp. 212–238, January 1992. [Online].
Available: http://dx.doi.org/10.1137/0613018

[25] T. A. Davis and Y. Hu, “The Univerity of
Florida collection,” submitted. Web site at
http://www.cise.ufl.edu/research/sparse/matrices.

