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Background and Motivation 

Continuum models can hold at 
the nanoscale, but…. 
 
 
 

 
 

III. COMPUTATIONAL METHODS

To simulate a nanotube with molecular dynamics, we con-
struct a !10,10" CNT by first creating a graphene sheet with
a carbon-carbon bond distance d and then rolling it into a
tube with its axis along the x axis. For this CNT, there are
layers of 20 atoms that all have the same x coordinate in the
crystal structure. We construct a cantilever by fixing the po-
sitions of first four layers !80 carbon atoms" at one end of the
tube while the remaining carbon atoms form an uncapped
CNT of length L. The tip position u is the average position of
the last layer of 20 atoms. Since the carbon atoms in our
simulation interact through the Tersoff potential,19,20 we use
d=0.14589 nm because the more common d=0.142 nm
does not correspond to the minimum energy configuration of
this tube structure. This choice of d only affects the clamping
of the tube. We performed MD simulations with d
=0.142 nm for a CNT with L=20 nm and T=300 K and
obtained the same results within error for all quantities pre-
sented in this work.

We use the stochastic Andersen thermostat21 to generate
states from the canonical ensemble at constant temperature.
We also tried the deterministic Nose-Hoover algorithm to
equilibrate the system but we encountered long relaxation
times in the tip displacement due to the tendency for ballistic
phonon transport in CNTs.22 The Andersen thermostat, which
changes the velocity of particles by choosing a new velocity
from a Maxwell-Boltzmann distribution, promotes mixing of
the phonon spectrum and a short relaxation time for the tip
displacement. For CNTs of length 20 and 50 nm, the veloci-
ties of all carbon atoms change every 10 ps and 60 ps, re-
spectively, which is approximately the period of the funda-
mental mode of vibration.

To calculate the thermal vibrational spectrum of a CNT,
we use the states from the canonical ensemble as initial
conditions for trajectories with constant energy dynamics.23

This method of first sampling the ensemble and then per-
forming a simulation according to the true Newtonian dy-
namics is standard in the study of liquids.24 Trajectories for
CNTs of length 20 and 50 nm lasted 1 ns and 2 ns, respec-
tively. For each state j in the ensemble, the tip displacement
uj!ti" is sampled at 10 fs intervals during the constant energy
dynamics. Since the tip displacement is the average over the
positions of 20 carbon atoms, radially symmetric modes are
filtered out. The thermal tip displacement spectrum is
#$u!!k"$2%=N−1& j=1

N $uj!!k"$2 in which uj!!k" is the normal-
ized Fourier transform of uj!ti". Here, N=30 is the number of
initial states from the ensemble for both the 20 and 50 nm
tubes. This ensemble average #$u!!k"$2% will be compared
with the theoretical result in Eq. !8".

IV. RESULTS

The discrete points with error bars in Fig. 1 are MD re-
sults for the vibrational spectrum. Figures 1!a" and 1!b" cor-
respond to a 50 nm CNT at T=300 K and a 20 nm CNT at
T=700 K, respectively. Both spectra clearly have distinct
peaks. The shorter CNT has a fundamental peak at a higher
frequency; the shift in frequency is consistent with the char-

acteristic frequency "='EI / !#A"L−2. Both spectra also dis-
play a series of higher-order peaks with increasing frequency,
a feature we will soon relate to the beam characteristics of
the CNT. At frequencies larger than the fundamental peak
but between neighboring peaks, the spectrum scales as !−2, a
characteristic of Brownian motion. Hence, the ensemble av-
eraged dynamics of the tip at !$!0 is apparently diffusive
with additional intensity due to the beam resonances of the
CNT.

We would also like to make a quantitative comparison of
the beam theory with the MD results. Since the predicted
frequencies are proportional to the characteristic frequency
"='EI / !#A"L−2, we must first determine the flexural rigid-
ity EI. Since Eq. !3" implies that EI is related to #u2% as a
function of T, we show this plot for a 20 nm CNT in Fig. 2.
As dictated by the theory in Eq. !3", the best-fit line is con-
strained to pass through the origin. To obtain a numerical
estimate for EI, we assume the nanotube is an infinitely thin
cylinder. This implies an aspect ratio of %='2L /R
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FIG. 1. !Color online" The thermal vibrational spectrum for !a"
a 50 nm CNT at T=300 K and !b" a 20 nm CNT at T=700 K. The
range of the axes in both plots is the same to facilitate comparison.
In addition to the MD results, we display results from the Timosh-
enko and Euler Bernoulli beam theory. For the Timoshenko results,
the width of the impulse is the error in the frequency prediction that
results from uncertainty in estimating the flexural rigidity EI. The
total intensity is the sum over the spectral intensity of the peak.
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I. INTRODUCTION

Unlike the silicon cantilever in an atomic force micro-
scope !AFM", the thermal vibrations of an anchored carbon
nanotube !CNT" can be significant compared to its radius.1

Experimental measurements of these intrinsic vibrations
along with continuum beam theory allow one to estimate the
CNT’s stiffness.1,2 Moreover, the thermal vibrations are
closely linked to the resonance properties of the CNT !Refs.
3–6" as they serve as a source of self-excitation and noise in
determining natural frequencies. These resonance properties
play a crucial role in using a CNT cantilever as a nanome-
chanical sensor and have recently enabled the mass measure-
ment of a single gold atom.7 Cantilever structures are also a
key component in the AFM, which can manipulate a single
molecule. Efforts to obtain a more sensitive AFM through
smaller cantilevers8,9 suggests that a single CNT may replace
the usual silicon-based AFM cantilever. A fundamental step
toward this next generation sensor is characterizing the noise
that arises from the thermal vibrations with the intent to ul-
timately mitigate its effects.

To this end, we calculate the free thermal vibrations of a
CNT cantilever with molecular-dynamics !MD" simulations.
Much like early experimental work on AFM cantilevers,8,9

we track the CNT’s tip as a function of time and calculate the
Fourier spectrum of its displacement. While previous work
has used MD to investigate other properties of a suspended
CNT,10–13 this is the first calculation of this thermal vibra-
tional spectrum. Our MD results show a rich diversity of
features not apparent from current experiments, which in-
clude a discrete set of higher-order peaks in addition to a
peak that corresponds to the fundamental mode of vibration.
Inspired by the pioneering work of Treacy et al.,1,2 we ana-
lyze the spectrum with equilibrium statistical mechanics and
continuum beam theory which provides a coarse-grained
model for the long-wavelength transverse phonons. The Ti-
moshenko beam theory, a generalization of the commonly
used Euler-Bernoulli !EB" theory, provides an excellent
quantitative description of the frequency and intensity of the
discrete peaks of the vibrational spectrum. Moreover, the
MD results also shows finite-temperature features not cap-
tured by continuum beam theory such as the spreading of the
peaks and a scaling at high frequency that indicates diffusive
motion of the tip.

II. BEAM THEORY

Since understanding the free vibration of a CNT cantile-
ver is essentially a study of its dynamics, we assume that it
behaves like a continuum tube governed by Timoshenko
beam theory.14 For a beam with its primary axis along the x
direction, its kinematics are described by its transverse dis-
placement y!x , t" and its angular rotation "!x , t" in the !x ,y"
plane for all times t. This description applies to both dimen-
sions, y and z, transverse to the beam. These fields must
satisfy Euler’s balances for linear and angular momentum

#A
!2y

!t2 = −
!

!x
#kAG$" −

!y

!x
%& , !1"

#I
!2"

!t2 = EI
!2"

!x2 − kAG$" −
!y

!x
% , !2"

where # is the density in mass per unit volume, A is the
cross-sectional area, I is the area moment of inertia of the
cross section, and G and E are the shear and Young’s moduli,
respectively. In addition, k is a geometric factor called the
Timoshenko shear coefficient that depends on the shape of
the cross section.14,15 In the Timoshenko theory, the shear
force Q=−kAG!"− !y

!x " results from the difference in the an-
gular rotation and the slope of the displacement. For a can-
tilever of length L, the boundary conditions at the fixed end
correspond to a fixed displacement y!0, t"=0 and rotation
"!0, t"=0, while at the free end we assume no moment
M!L , t"=−EI !"!L,t"

!x =0 and a shear force Q!L , t"= f .
We first consider the static deflection of the cantilever due

to a tip force f by setting the time derivatives to zero in Eqs.
!1" and !2". For the tip displacement u'y!L", the solution
u= 1

K f is linear in the force with spring constant

K =
EI

L3

3
1 + 3$/%2

in which $'E / !kG" is a measure of the normal stiffness
relative to the shear stiffness and %'L /(I /A is an aspect
ratio for the beam. With the applied force f , the tip can only
be at mechanical equilibrium at u if the rest of the beam
exerts a restoring force −Ku on it. We can assume this force
results from a harmonic potential U= 1

2Ku2 on the tip. In
thermal equilibrium at a temperature T, the Boltzmann-Gibbs
distribution states that the probability of a displacement u is
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Background and Motivation 

•  Physical systems often involve phenomena occurring at 
scales that are beyond the reach of continuum (e.g. 
applications in nanotechnology and fluid dynamics). 
 

•  At such small scales, the continuum constitutive laws (e.g. 
relationship between heat flux and temperature gradient, 
or between fluid flow velocity and pressure gradient) are 
proved to be inadequate. 
 

•  The unresolved degrees of freedom in the mesoscale and 
atomistic scales are often approximated by some 
corrections in the constitutive laws. 

 
 
 



Fourier’s law and coarse-grained atomistics follow 
different dynamics 

Possible causes: 

ñ  Incorrect 
conductivity? 

 
ñ  Stochasticity? 

 
ñ  Does Fourier’s law 

even hold at the 
atomistic scale? 

The lack of understanding of these causes is problematic 
because their effect propagates to the continuum scale. 



Two Questions 

 
1. Can established continuum constitutive laws 

be modified to enable predictive simulation 
at the nanoscale? 

2. If so, how?  If not, is there a framework for 
deriving such laws? 



Approach 
 
 

 
•  Hypothesis: Extraction of continuum scale constitutive laws from 

atomistic simulations can be accomplished based on uncertainty 
quantification and statistics. 
•  How do we use them in continuum simulations? 
•  What happens when we are not in the large-time limit? 

 
•  We first analyze and study the extraction of a continuum scale 

constitutive law from molecular dynamics (MD) simulations while 
accounting for the uncertainty due to finite sample size and time 
scale arising from physical fluctuations. 
 

•  We use Bayesian inference to extract the constitutive relationships 
from noisy atomistic data, but we need to determine the 
appropriate mathematical framework for the models. 
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Atomistic Simulation of the heat transfer 
in a “1D” bar 

l  The bar is made of solid Argon.  
 
l  Initially the temperature is equal to 20 K all over the bar. 
 At t=0, we impose the Dirichlet boundary conditions shown in the 
figure.  
 
l  We extract the temperature T, temperature gradient ∇T and flux q at 
the mesh depicted in the above figure using the Hardy formalism. 
 Templeton, Jones, & Wagner, MSMSE 2010. 
Zimmerman, Jones, & Templeton. J. Comp. Phys. 2010. 
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We average the data obtained from the atomistic simulations with a 
time window tw. The plot below shows short-time averaged values of 
the thermal conductivity k versus temperature. 

Time Averaging and Sampling 

Black:  tw=64 fs 
Green: tw=1024 fs 
 
 
  

T (K) 

At low time scales, the thermal 
conductivity can go negative! 
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Prior Likelihood Posterior 

l  The prior expresses the initial knowledge about the hypothesis m (e.g. 
uniform distribution, expert's knowledge...) 
 
l  The likelihood is the probability of observing the data d given the 
hypothesis m. It encompasses the forward model of m. 
 
l  The denominator is a normalization constant. 
 
l  The posterior is the probability of the hypothesis m given the 
    data d : offers an enhanced knowledge of m. 

Let m be a hypothesis and D observed data. 

Bayesian Inference 



METHOD 1:  INFORM A FOURIER 
CONDUCTIVITY 



 
 
We ASSUME that the thermal conductivity is a linear function of the temperature. 
We have: 
 
 
 
Where       and, A and B are the parameters represented by PCEs to be 
inferred along with the hyperparameter σ2. 
 
The data          is obtained from the MD simulations.  
 
We assume a Gaussian likelihood function: 
 
 
 
Assuming Jeffrey's prior on σ2 and improper uniform priors on A and B, the 
marginal joint posterior (A,B) follows a Student-t distribution and can be derived 
analytically.  The random variable k=A-BT also follows a Student-t distribution. 
 
 
 
 
 
 
 
 
 

k = A− BT , q= − A− BT( )∇T +σε

ϵ∼ N(0,1)

L (d∣A,B,σ 2)= − (2π)− Nd/2(σ 2)− Nd /2exp( − ϵT ϵ
2σ 2 )

Bayesian Inference of the Thermal 
Conductivity 

d j
Nd= (T j, ∇ T j ,q j)

We assume a constant parametric noise model 

Rizzi, Salloum, Marzouk, Xu, Falk, Weihs, Fritz, & Knio, SIAM MMS 2011. 
Marzouk, Najm, & Rahna, J. Comp. Phys. 2007. 



 
 
l  The derivation so far does not guarantee that the random variable k is 
positive for all its realizations. 
 
l  To enforce the positivity of k, we proceed as follows: 
 
1.  Samples are drawn from the obtained Student-t distribution. 
 
2.  The samples that do not satisfy the positivity constraints are 
eliminated. 
 
3.  The Rosenblatt transform is used to map the truncated joint posterior 
(A,B) into two independent uniform random variables. 
 
4.  An approximate inverse Rosenblatt transform is used to map the 
uniform variables into PCEs. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Enforcing the positivity of k 

Sargsyan, Debusschere, Najm, & Le Maitre, SIAM. J. Sci. Comput. 2010. 
Sargsyan, Safta, Debusschere, & Najm, SIAM. J. Sci. Comput. 2012. 



Enforcing the positivity of k 

A (W.m-1.K-1) 

PD
F(k) 

k (W.m-1.K-1) 

B (W
.m

-1.K
-2) 

Positivity of k not enforced 
Positivity of k enforced 

Solid line: Positivity of k not enforced 
Dashed line: Positivity of k enforced 

tw=32 ps 
tw=128 ps 
tw=512 ps 

 
 
After enforcing the positivity, the mean of k increases which physically 
implies that more heat is transported in the material when the effect of 
the backward propagating phonons is eliminated. 

k= A− BT



The Constitutive Law 

tw=8 ps tw=32 ps tw=128 ps tw=512 ps 

Enforcing the positivity of k effectively removes the negative 
conductivity samples and results in an over-prediction of the 
heat flux. 



Continuum Simulation 

x

Full MD simulation 
Continuum simulation based on 256 samples 
Continuum simulation based on 512 samples 
Continuum simulation based on 1024 samples 

We propagate the obtained constitutive law 
with its quantified uncertainty in a 
continuum scale 1D heat transfer 
simulation. 
 
We compare the obtained mean 
temperature (smooth profiles) to the one 
obtained by solving the continuum problem 
directly using MD (noisy profiles). Very 
expensive simulation! 
 
A reasonable agreement with this “true 
solution” is found for tw>128 ps but the 
estimator is empirically biased 
(undesirable). 
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METHOD 2:  MODEL 
 CONDUCTIVITY AS A GAUSSIAN 

PROCESS 



 
 
We ASSUME that the heat flux is a function of the temperature and temperature 
gradient with the following Gaussian likelihood function: 
 
 
 
Where H and C are derived from data at each training point, 
and β and σ2 are inferred from the MD simulations.  
 
We then derive a heat flux model, including model form uncertainty: 
 
 
 
Assuming Jeffrey's prior on σ2 and uniform priors on the coefficients and set 
roughness parameters by maximizing an appropriate likelihood function, the 
marginal joint posterior follows a Student-t distribution and can be derived 
analytically. 
 
 
 
 
 
 
 
 

q = f T ,∇T( )+ σ 2V ξ

L q|β ,σ 2 ,Ψ2( )≈N Hβ ,σ 2C( )

Bayesian Inference of a Gaussian Process 
Heat Flux Model 

d j
Nd= (T j, ∇ T j ,q j)

Oakley & O’Hagan, SIAM. Biometrika 2002. 
Bastos & O’Hagan, Technometrics 2009. 



Enforcing Solvability Constraints ∂q
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Gaussian Process Results Using Local 
Sampling 



Gaussian Process Results Using Global 
Sampling 



Gaussian Process Results 
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Conclusions 
 
•  We demonstrated the feasibility of determining unknown continuum 

constitutive relationships from simulation data in a nanoscale setting 
using Bayesian inference. 

•  It was necessary to enforce the appropriate constraints on heat flux forms 
because diffusion equations have solvability constraints. 

•  Uncertain constitutive laws were propagated in a continuum scale 
simulation. The obtained temperature mean is in good agreement with 
the one obtained from the “true solution” for bigger time scales. 

•  The method we developed incurs significant computational savings and 
has promise to to be used in a wide variety of problems in which 
constitutive relations are needed to efficiently simulate a coarse-grained 
model. 

•  Further efforts will be made to account for model errors, dynamically 
optimize the parameters used in this study and to test its performance in 
additional problems of physical interest. 
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The PC coefficients 

k=0 
k=1 

k=2 
k=3 

A B k=A-BT T=50 K 
tw=128 ps 

Nd Nd Nd 

A= ∑
k= 0

P

AkΨk( ξ )

B= ∑
k= 0

P

BkΨ k( ξ )

. 

. 

. 

k= ∑
k= 0

P

(Ak− BkT )Ψ k( ξ )

Not all PC 
coefficients follow 
the central limit 
theorem 



Global vs. Local Sample Locations 
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Global vs. Local Data 
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Raw Atomistic Data 
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Example:  Atomistic-to-Continuum Thermal 
Coupling 

Free atoms Finite element mesh Boundary conditions 

Ghost atoms 
Continuum laws break down at small length scales as the 
discrete atomistic processes become more pronounced. 
 
Atomistic simulations have a bounding length scale as only a 
finite amount of atoms can be simulated by a computer. 



Several approaches have made progress at deriving 
constitutive relations from this perspective 

Many existing theories and methods for coupling two distinct 
mathematical models at different scales. 
 
1.  The homogenization methods identify large-scale 

governing equations through asymptotic analysis, but 
result in an infinite number of small-scale PDEs. They are 
restricted to cases of large scale separation. 
 

2.  The computational methods postulate a single large- and 
small-scale set of equations. They are based on coarse-
graining and they are applicable to cascade scales. 
However, the lack of a series representation for the 
solution implies uncertainty is present.  

 



The Computational Method in Atomistic-to-
Continuum Thermal Coupling  

ñ  Constant coefficient Fourier’s law heat transfer for the continuum: 
 
 
 
ñ  Finite element projection for atomistic temperature evolution 
 
 
 
ñ  Coupling constraints to enforce energy conservation 
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