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Single crystals Thin films =
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Single Crystal POWderS
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“XRD flow chart
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molecule packing
predicted density 7




Standard XRD “

Powder

0.05 um to 50 um

Powder X-ray diffractometery (PXRD)

Phase identification: What is this stuff?

Phase fraction quantification via RIR: How much is there? |;:;: _ ‘

Out-of-plane preferred orientation: Is sample non-random? &

crystallite size / micro-strain: What can I learn about the crystallites?

Lattice parameter indexation / cell refinement: What is the cell? @
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A 4

Known structure?

{Structure Solution from

Powder Data (SSPD)
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——

Rietveld
refinement

,

Phase fraction
space group,
lattice parameters,
atom positions,
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thermal ellipsoids,
Bond lengths & angles
molecule packing
predicted density
size/strain




Nano-crystalline Bowder
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[Powder X-ray Diffractometery (PXRD)} [ Atomic pair distribution function (aPDF) }
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Phase identification? Known structure?
Out-of-plane preferred orientation: l
. _ _ aPDF
crystallite size / micro-strain: .
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space group,
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. atom positions,
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thermal ellipsoids,
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molecule packing
predicted density
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Thin stuff

Thin film
|
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[ Powder X-ray Diffractometery (PXRD) 1

v

Phase identification:
Phase fraction quantification via RIR:
Out-of-plane preferred orientation:

crystallite size / micro-strain:

Lattice parameter indexation / cell refinement:
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Both out-of-plane & in-plane texture

Pole figures

ODF (orientation distribution function)

Residual stress analysis
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Reciprocal space mapping

Diffuse scattering

Thin film modeling 7
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Film roughness
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Bulk

v

[ Powder X-ray Diffractometery (PXRD) 1

v

Phase identification:

crystallite size / micro-strain:

Phase fraction quantification via RIR:

Out-of-plane preferred orientation:

Lattice parameter indexation / cell refinement:

4
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Random?

Known structure?

|

Structure solution }

From powder (SSFP)

model
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—

Can’t grind it

—{Texture attachment}

v

Both out-of-plane & in-plane texture
Pole figures

ODF (orientation distribution function)

Residual stress analysis 7

Phase fraction
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Single Crystal



Single-Crystal XRD is a reasonably mature science and
IS becoming routine for many materials systems

3 hour
automated

data collection
~1 Gb

Bruker Single-Crystal diffractometer
with Apex CCD detector

0

. . Solved
\ Frame Integration
Structure
\\ Structune solution in <4 hrs

= \M\ ©

~30 min
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Powder



For the rest of us who have something other than a big single
crystal, there is the world of powder diffraction characterization

 Powder
0.05 um to 50 um

[0 0:30-07 kDI Silicon STD =Pai=0.0=

Anatomy of a powder XRD pattern

Detector path
Bragg’s Law d, | “Fingerprint
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: 9 sing
k» p | = site occupancy
1.9201 A & phase fraction
500 47.303P 20 ‘h;
oL 2] N | FWHM =crystallite
‘ 2oz sieen-9l sjze & micro-strain
| .

terials Data, Inc. [$827279Imaradri] <h ADATASCANData-01> Wednesday, Sep 26, 2001 09:16a (MD



First step in a typical analysis is the straightforward qualitative phase ID.
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XRF can be used for a quick check of the chemistry for the specimen.

XRF shows strong signal for Fe and Zr elements

. ops/ey
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There is also the presence of Hf and Y as well.
You might need to do some investigating.....

Y is used to stabilize the cubic ZrO, phase.
Hf is likely a contaminant in the Zirconia.



Typically, analysis software allows you to fit the peak profiles. This is important
because quantitative phase fraction depends on relative peak areas, and
accurate 260 positions (i.e. d values) will improve lattice parameter refinements.
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After profile fitting, the difference pattern looks essentially flat, indicating that
the peak areas are modeled well. This information can be now used for
guantitative analysis.
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Semi-quantitative analysis via Reference Intensity Ratios (/1 ,qum) €N be
generated in most software via reported RIR values from the PDF database.
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Separation of micro-strain broadening from crystallite size broadening
can be done based on FWHM changes with 20 angle.

ElEEREE [8]] Cunent Setiings

IF'SF: peeudo-Yaigh L|—|_ Larentzian =||:|.5 2 Owerall Prafile ~
...... Difference Pattern B
ILeveI Backaround LI v Skewness =|D.D 3: A

|ndividual Profiles
¥ Reset Existing Profiles [ K-alphaZ Present & | |[] Ka1 +Ka2 F'lofiles

Fu[S ] Cos(Theta]
0.2414

Estimated
crystallite size
~0.2 um
(upper bound)

o TET
WORKSHI v
S > '
IBECIE) - I &  — — St

09225015
09225-021 =
09225-031 NS
09225-04.1

ey Fit micro-strain
ooty value ~ 0.1 %

10006-02.t
10006-03.
10006-03.t
10006-04.; | l
10006-04.t

10006-05.¢ . . . . .
e Conclusion: it looks like ZrO, peak broadening is mostly

L . ..\ | due to micro-strain.

?;t;ﬂ e s T ETDEECGCEPR ¥ 0 " O3 =11 2 Jade 9 .. & 2. . PE 100PM




If the unit cell is known from the PDF entry, you can usually perform a
lattice parameter refinement based on peak positions for a given phase.
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Lattice parameters and
Vegard's Law



The idea behind Vegard’s law is based on the concept of Solid-Solution.

Imagine | am making an alloy from two pure metals of similar structure.

Nickel Copper
cubic cubic
Fm3m Fm3m

L)

»

&
<«

a, = 3.524 A

d
D g

; ac, = 3.615 A
The lattice parameter

of the synthesized
alloy will fall between
the end members as
an “atomic” weighted

aalloy = (4X) ay; t (1'X) dcy

7

average of the mixed

Where x IS the atomic fraction
metals. -

of each constituent.

ayi < )0y < Acy



Therefore, if we plot the lattice parameter vs. mole percent of the mixture
we should be able to predict what the lattice parameter will be at any
given composition for an alloy of Ni,Cu,_,
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Likewise, if we measure the lattice parameter of an alloyed mixture
we should be able to predict its chemical composition.




Here is an example of Vegard’s law
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: : " Fluorite
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Rodriguez, et al, (2008) Powder Diffraction 23 259-264.




For Rietveld structure refinement a high-quality dataset is
usually required so | ran the sample overnight.
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The overnight scan picked up two more phases that are present
at low concentrations as seen in this zoomed range.
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For low concentration phases it is very important to make sure the small
peak profiles are fit properly for accurate phase fraction quantification.

Rietveld
refinement ' ' T
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5 Rietveld
ol | | | | | | | | | | Refinement
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Rietveld structure refinement yields much more accurate quantitative analysis
along with structural parameters and even sensitivity to Fe deficiency in FeO.

Iron
\o

1.0 + 0.2 Wit%
a=2.866(2) A

\ Feg ¢7,0

19.0 £ 0.2 wt%

Monoclinic ZrO, a=4.3022(6) A

0.5+ 0.2 wt%

a=5.17(3) A

b =5.19(3) A This is about as good as you will
c=5.32(1) A get to the grail for this sample

B =99.2(2) ©



Rietveld structure refinement was used
to find cations in Zeolite 3A powder.

| was given ICP results

zoelite A3 refinment
Lambda 1,|54{15 A, L—lS oycle 251|7
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D 4D i
= S
Y
oL 5
?I'r
L)
0l
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| and Ca
I difference curve ]
ol *V”*T'*I‘*‘“‘L‘"‘“'W“‘“““““" e | cations located?
i
3 | | | | | | |
200 440.0 £0.90 50.0 100.0 120.0
2—Theta, deg

Curgor commands: H — Height, W — Location X — Exit



Rietveld Refinement results
matched well with ICP analysis.

Molar
content

Molar
content
Ca

ICP 0.13
XRD 0.14(2)

ICP 0.37
XRD 0.40(3)

Molar
content
K

ICP 0.34
XRD 0.32(3)




Here is an example of nanocrystalline Au powder contaminated with salt.

\ Powder
I[1IIIIIIEIII-III3.hr1IZfII] Yive Al nanopowder in Be dome moved overnight
‘< 0.05 um (50nm) 00-004-0784> Gald - Au
25001 nano”
Low Q (Cu) radiation
2000 1
% 1500 4
=
B . Sample shows broad peaks
for nanocrystalline Au along
with large crystals of NaCl.
G007 l
0 ‘ L

10 20 30 a0 50 &0 70 50 an 100 110
Twio-Theta (deg)

Sandia Mational Laboratories [5577959 |marodr] R0 _data'theta-thetat0ATA_DIFRWOATA 10> Manday, February 15, 2010 D4:45p (WO1ALADED)



A Rietveld structure refinement of powder data reported the
expected lattice parameter values for Au and NaCl phases.

Vive nano An with NaCl

Hi=zt 1

Lambda 1.5405 A, L—F cycle 2043 {Ob=d. and Diff. Profiles
I | I I I I I I

7
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ey —
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w2 =1.492
oL -

0.0

Counts

30.0
=—Theta

40,0 50.0 60.0 0.0

80.0

850.0 100.0

Maousge |[]L{\c-,;.r‘t:um..-’.«r‘«:lFﬁl Left{H} — Height, Right{W) — Location Both(X) — exit

118.0

expected
v

Au a=4.0782) A o
Au vol = 67.8(1) A3
Au B,,=0.6 A
NaCl a=5.639(1) A sew0
NaCl vol = 179.3(1) A3
NaCl B, = 2.1 A2

Wt fraction:

Au: 34.6(5) %
NaCl: 65.4(5) %

Crystallite size for Au ~8 nm.,




High Q XRD data can be measured for the purposes of generating
an atomic Pair-Distribution Function (aPDF).

— T | T T T T T T | T T T | T T T —]

E Darnping factar (applied?: nad E

0 Fi@) after damping -

- Vive Au nanopowder with NaCl .

: contamination — high Q data ]

26 ]

@ 1{}?— —f

- A, ‘ L w”d .

F(Q) is : -
the total - ]
scattering C .
structure  ~'°F -
function T N T R T T =

o]
=
)
o
=
=
=



The atomic pair distribution function (aPDF) of a nanomaterial can
be helpful for characterization purposes.

Nearest neighbor (NN) distances can be derived T T

from the atomic pair distribution function (aPDF) 2SEXpethodsAu4';Nsci'fta(a”:;ef% .

2.86

4.95

Helpful for determining coordination A

G(r) function can be refined in
a similar fashion as Rietveld =
refinement of XRD pattern O

10080-merge-2x-bkg-sub.gr:G

cooGtrunc
— Gdiff
— Geale  { - 2

o
[T T 1 T T T ] T T T 1 T L | L T L T T 1

NN distance (A)




Thin Films



Even running this film sample overnight in standard 6—26 configuration does
not reveal any signal for a crystalline film presence on the Silicon substrate.

[08143-058.M01] 100/l 3000 rprm Taol 0.3 slits rermount Al abs. overnight

Thin film ||

250

200

14504

Intensity(Counts)

100

a0

Very thin cellulose film

/

T

T

e

Single Crystal
Silicon (400)
substrate

WWWWWWWWWWW

Sandia Mational Laboratories

10

30
Two-Theta (deg)

[s#7 7988 Imarodri] <\XRO_data'theta-theta\DATA DIRVDATADS > honday, Juby 26, 2010 02 48 (MOLLLADED)



Setup of Grazing Incidence X-ray Diffraction (GIXRD)
employs parallel beam optics.

Detector
scans 20

Very fine slits &
[ ]
X-ray
tube \
Special soller-slit

Sample fixed at attachment

a very low angle
(~1.0°0)




GIXRD analysis of film shows reasonable match to cellulose I.

[08143-20. WDI] Crystalline cellulose film Gl series <Theta=1.0=
[083143-20.MD01] Crystalline cellulose film Gl series <Theta=0.5

00-056-1718> (CsH1oOs)n - Cellulose I
F00

GO0

_ Si Laue
. Grazing angle = 2.0° piak
E 400
2
¢ | , Grazing angle = 1.0°
200 4 .
- Cellulose crystallite
Grazing angle = 0.5° czonh size estlmatec_i from
100 (200) FWHM is
i wapprommately 4 nm
@11) | | (111) EI1'3|'2?' 21 (1210 WMW
DE I I I I 1b I I I I 1% I I I I Eb I I I I 2% I I I I =0

Twio-Theta (deg)

08143



Reflectivity Is a low-angle technique
for analysis of thin films

Focusing

X-ray
tube

mirror
E[ detector
e > |

At very low angles X-rays
undergo total external reflection

Film density
determines
critical angle

R

At some critical angle
X-rays penetrate film
and intensity drops




Reflectivity setup

Sample stage with
height, level, and
knife edge adjustment

-

B\ o —r/ | -

=AW o | Solid-state detector
Cu X-ray source . B’ A 5 with fine receiving slits
with mirror optic—§ e [

and adjustable | 1
incident slit width-——= g 0 , ==

Scintag X, diffractometer system

Note: alignment is very important. Specimen film must be centered at the maximum
of the specular reflection intensity, which is usually < 0.2° wide.



Here Is an example of successfully modeling reflectivity
data from a very thin Silane film on a Si wafer.

REFS Mercury - D:\customer\mayer\01046\G1\G1_merge_sec.txt

Silane film Density
1.81 g/cm?

Actual Data Fitted Data

Silane film Roughness s
6.5 A ="

Silane Film thickness 10 4 N
15 5 A 10‘00 20‘00 30‘00 40‘00 50‘00 60‘00 70‘00 80‘00 90‘00 10(;00 11(‘)00
. Seconds

Film thickness from Ellipsometry Slla{]e

SiO
13.1 A — 2

Silicon substrate




Pole-figure analysis can be a big help In
characterizing films and textured metals

Texture cradle adds two additional
degrees of freedom (Chi, Phi)

Phi
SS

Scintag Texture Cradle Attachment

| By tilting, we can look at grains that
Chi (or Psi)  are not normal to the sample surface

Pinhole collimator



Texture definitions

Random grain orientation = no texture

Fiber Rolling Texture Bi-Axial

out-of-plane (YES)
In-plane: 1-dimension of

out-of-plane (YES) out-of-plane (YES)

In-plane (NO) freedom, other fixed In-plane (YES)
0-90-9 00-90 o N\ 0 "~ o= @—® @—®
WIEIEl ol giogol

A A

A




Pole figure represents a distribution in space of
a given set of lattice planes (hkl).

100 (110)

All possible orientations of a selected
Pole Figure Measurement hkl plane are pl_otted on a hemisphere
that is then projected onto a planar
surface (i.e. pole figure)

http://www.mrl.ucsb.edu/mrl/centralfacilities/xray/xray-basics/index.html#x4



Texture analysis Is useful for confirming

bi-axial texturing of SrTiO; on (200) Ni metal.

. . . File: Pole_220 ID: pole fignre on SQTO (22}])
Bi-axially oriented B o o £l e
SrTiO;4 crystals

(200)

A

Ni substrate

081

(220) planes shown in red
will diffract at 45° from

a1

(200), each separated by 90° SITiO, (220) pole figure

a7

23

12

15

11



Tilting the sample can also make it
possible to measure in-plane strains.

« > >

= \\

Tensile Compressive

Data for ErD,
< thin film

Ad/d,
EEEE

Strain = -0.19%

Positive slope:
tension

Negative slope:
compression

CHF CP I CFE OO CO5DhD SO Co <=

Sin?(psi)



Bulk



Bulk Sample of Molybdenum for Texture Analysis

Molybdenum
metal coupon

Molybdenum
pole-figures
showing
rolling texture




SSPD

(structure solution from powder data)
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High resolution powder data was collected at APS 11-BM* and
structure was derived from indexed powder diffraction pattern.

| knew the approximate composition and assumed Ta was in TaOg building blocks

#, FOX: Free Objects for Xtal structures v1.7.5.1-#962 g || LaZTa207(OH)2 Lj L.‘_] Jll
File ©Objects Preferences Help -0.100<=x==1.100

-0.100=y=2.100
Crystals | powder Diffraction | Single Crystal Diffraction | Global Optimization -0.100<z<1.100

[=lList of all Crystals a
I;—lliIr';.-'sI:aI LaTal4

File ][ Parameters ][ Scatterers ][ Display

Zonskrain Lattice ko SpaceGroup Symmekry| Yes (Defaulk)

Ilse Dynamical Qocupancy Correckion Yes W

Display Enantiomer| Mo %

AntiBurnp O.000000 Scalel 1.0000C

Bond Yalence Cost| 0.000000 Scale| 1.0000C

ar[]L ]| 141710 bR L [#]| 3.93000 cp[]L [¥]| 672100

Spacecroup: P 121Nl
[=Lisk of Crystal ScatteringPowers

|

La,Ta,0,(OH), NEE

|;—|5catteringF‘|:uwer.ﬁ.tDm La Symbol:| La+3
|;—|ScatteringPl:uwer.ﬁ.tDm O Symbiol;| O-2 PG00+ H
|;—|ScatteringF'n:|wer.ﬁ.tn:|m Ta Symbal:| Ta+5 gggg:
[=IList of Crystal Scatkerers 2000+ p

(Jakom| Lat 1288::

wr[¥]L (]| 0.2962¢ wr[#]L []| 0.00777 zR[¥]L []| 0.5069¢ Latoccupr[ L Egg

Scatkering Power; 1000
. 200t
=IMolecule) Taos &00+

- - - 400+
[ File ][ Parameters H Formula & Restraints ][ Manipulate Geometry =00+ |
_D i - § - f T - T - ¥
< X 27 36 45 54 63 7.2 81 9 99 108 117

Generating Full HEL list. .. Done (kept 447 reflections) Ztheta= 4.09 ,I= 2984.32. pixel=# d=5.7904

*http://11bm.xor.aps.anl.gov/



Refinement of high resolution powder data yields
excellent quality structural information.

| | I @
La,Ta,0,(0H), Q ‘
R, = 5.6% t il
[ A=0.41317A ' =
I |
:
E

.....

MTne

4 5 6 7 8 9 10 11 12 13 14 15
Two-Theta (degrees)



It is possible to derive the structure from the powder pattern. But it is not by any
means an easy task. Any ability to isolate the compound’s chemistry, density,
symmetry, properties, etc., will aid in directing the crystal solution.

formula La,Ta,0,(OH),

Space group P2,/n

a (R) 14.1711(6)

b (A) 3.9303(2)

c (R 6.7201(3)

B () 91.08 e

Vol 374.22 -

z 2 L

R, 0.056 ok

La (X, V, 2) 0.299 0.005 0.502 : La-O. La-OH
Ta 0.538 0.494 0.729 . layer

o1 0.579 0.488 0.419

02 0.544 0.026 0.712 _ . ‘ -Cr)i_tghedra
03 05 05 0 . 4 4 . J layer
04 0.174 0.015 0.252

OH5 0.198 0.522 0.625

Model of La,Ta,0,(0OH),



Questions?



