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Batteries are BIG but the solution to the
problems are smail.

» 16 KWh Li-ion battery pack for the Chevy Volt
(175 kQ)
* 90Wh/kg max capacity, 50 Wh/kg normal

» Comparison: WWII era electric torpedo
battery pack ~ 4 KWh, 550 kg (7.3 Wh/kQ)

http://www.popularmechanics.com/cars/n

ews/pictures/Chevy_Volt_Slideshow

Lots of Energy!: Chevy Volt battery pack = 9 kg of C4 explosive

How do we increase the capacity?

* New anode materials (e.g. Si) offer up to 10X Li storage capacity
at the anode (compared to graphite)

* New cathodes (e.g. LiNiy sMn, 5s0,) offer ~ 25% higher cell voltage

* Problem: Materials have limited lifetime @ Sandia
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Scientific Challenges in Li-ion Batteries
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Nanoscale Electrochemistry at CINT:
Three Approaches

1. Structural and mechanical
characterization by in situ TEM

<=
« strain accommodation during lithiation a-Li,O + Sn-Li
* initiation of defects (e.g. dislocations/
cracks) - ' Sk

* kinetics of lithiation

2. Single nanoparticle and batch

electrochemical studies Subramanian, et

al., in submission to
« correlating electrochemical properties NanoLett (2011).
to structure

* size-dependent behavior

3. Electrode/electrolyte interface studies

. ” Sullivan, et al.,
« SEl formation (composition and st broc. SPIE (2010).

morphology) :
» SEl evolution, aging, and stability éa

during cycling
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:/’ How do you do liquid
electrochemistry in a TEM? --ILs
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Capillary action of ionic liquids on Si Iin
the TEM.
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'
}‘ Electrochemistry inside the TEM:

Lithiation of a SnO, NW anode.

Potentiostat

Jian Yu Huang, et al., “In situ observation of the electrochemical lithiation @ Sandia

of a single SnO, nanowire electrode,” Science 330, 1515 (2010). P
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‘ _', Lithiation creates amorphous Li,O + Sn-Li
and a lengthening of the NW.

J.Y. Huang, et al., 2010. Laboratories



_ The reaction is diffusion-limited:
limited by Li* flux through Li,0.
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Imaging the strain accommodation
mechanism.

L LT EL TR Lt e ]
J.Y. Huanaq, et al. s Lahoratories



A snapshot in time showing the rxn

front and the phases.
Single Crystal SnO, Dislocation Cloud | Amorphous
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o all nanowire anodes behave the same?
The story with Si.
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et T (220)g; —= ’ a-Li, Si
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J.Y. Huang, et al., Nano Lett., 2011 (DOI:

10.1021/n1200412p)
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Lithiation of Si leads to a core-shell
structure.

Li lon Flux

» Core-shell structure; Conical shape of the core
* Reaction from surface to the interior
* No elongation, no dislocations
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}' How do we easily assemble and measure

“lots” of different battery materials?

Dielectrophoresis
(DEP) assembly
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A chip-based platform for in situ TEM.

Individual NW contacts

* common
DEP contact

g | mode] tilt — 1 ym — HV HFW WD | det | mag |mo
5000x| SE |52 5.00kV[1.28 mm | 5.2mm ETD|100x] S

A. Subramanian, et al.,” Single nanowire structural, electrical, and electrochemical
characterization during lithium insertion,” (in submission to Nano Lett), 2011.
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Hybrid Nanofabrication Platform for in situ TEM

silicon nitride i
membrane

B 500nm * 6um hole |

| » TEM window
(through hole in nitride)

3% ]5.00 kV [12.8 ym|5.2 mm | TLD[10000x| SE [52°
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Battery Materials Co-Assembly

Co-assembled, DEP-based integration of NW / NP Anodes & Cathodes

* Sequential co-assembly of anodic and cathodic nanomaterials onto the same chip using DEP

AN

N Si NW (Anode) |

>

LiFePO, NP (Cathodc)i i) &

‘ Hv ‘ WD ‘det mag |mode San_dla
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A 4
% Our approach: develop in-situ

electrochemical platforms for TEM.

Sullivan, et al.,
“Understanding Li-ion
battery processes at the
atomic- to nano-scale,” SPIE
Proc. 7683, 76830B1 (2010).

alignment
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Preliminary testing in the TEM ...

optical transmission
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Back up slides
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&.‘ How do we make in situ TEM of
battery materials an easy to use tool?

making an in situ TEM sample

~ 20 um @ ﬁaaggil?al
Laboratories




Test Case: -MnO, NWs

ﬁ- Mn 02 What are the structural and electrical
changes that occur after the first cycle?
P42/mnm
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Ex-situ lithiation is performed, followed
by characterization.
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First cycle lithiation disorders the lattice and
increases the resistivity — kinetic limitations.

ithiati thiati electrical changes
before lithiation — after lithiation (ratio of lithiated to

unlithiated resistance)
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 capacity fade is due to kinetic limitations Sandia

 can also see this by rate-dependent charging studies @ fro |



A
}More than three electrodes are provided:

enables field-driven assembly.

assemble battery material
on to electrodes
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Gianola’s group, U. Penn
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anging the reaction kinetics by changing
electrical conductivity: C-coated Si.
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There has been limited in-situ liquid-cell
TEM work.

Sapphire 2mm

Reservoir

Imaging window 20 pm — electrode

Ross, IBM J. Res. Develop. 44,
489 (2000).

Zheng et al., Science 324 1309 (2009).

Williamson et al., Nature Mater. 2, 532 (2003).

also ...
Electron beam
Thiberge et al., Proc. Natl. Acad.
Flow cell Sci. 101, 3346 (2004).
M Liuetal.,, Lab Chip 8, 1915
(2008).
f Sandia
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de Jonae et al.. Proc. Natl. Acad. Sci. 106. 2159 (2009).



Assembly requires alignment, sealing,
filling, and capping.

Align top and bottom chips
Epoxy seal (Epotek 301 — used industrially for Si chips)

Fill with electrolyte
Cap fill holes

1.
2.
3.
4.
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