
Tradeoffs in Targeted Fuzzing of Cyber Systems
by Defenders and Attackers

12 October 2011

Jackson R. Mayo and Robert C. Armstrong

Sandia National Laboratories, Livermore, CA

Benjamin G. Davis

University of California, Davis, CA

Sandia National Laboratories is a multiprogram laboratory operated by 
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the United States Department of Energy’s National 

Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2011-7533C



Fuzzing can locate faults and
vulnerabilities in complex cyber systems

• Fuzzing is automated randomized testing that 
samples vast input spaces to assess security

– Widely applicable, including for smart-grid devices

• Fuzzing can operate on a black-box system but 
can also benefit from system understanding

– Complements analytical approaches that reason about 
the system (formal methods and complexity theory)

• Effective fuzzing uses a targeted (non-uniform) 
distribution of test inputs

• Key questions:

– How should the sampling be targeted?

– How can the resulting confidence be quantified?



Seek a relevant measure to
organize the input space

• A cyber system is taken as a general program

• Ultimately, the inputs of greatest interest – likely 
faults – are determined by the semantics of the 
program

• Some inputs are “simpler” than others in the 
natural representation that the program induces

• These simpler inputs are expected to be the most 
valuable fuzzing targets for defender and attacker

– Precedent 1: fuzzing by mutation of normal inputs

– Precedent 2: cracking of low-entropy passwords

• There is a rigorous notion of how “simple” a bit 
string is…



Kolmogorov complexity distinguishes 
“natural” bit strings from noise

• Given some universal Turing machine M: 
Kolmogorov complexity CK of string S is length of 
shortest string D that, when fed to M, produces S

• D is shortest “description” of S with respect to M

– D is a “program” that runs on machine M to yield S

• CK is non-computable, but almost all N-bit strings 
have CK ≈ N (“algorithmically random”)

• Notional example showing low-complexity string:

11111111111111111111

1 << 10100 - 1

M 11111111111111111111

Other
descrip-

tions

D

CK

S



Kolmogorov complexity is relative
but “asymptotically absolute”

• View S as an input to the program being fuzzed

– Low CK means S is “simple” and favored for sampling

• Value of CK depends on the Turing machine M, 
which is a “decompressor” that should reflect a 
natural input encoding for the program – e.g.:

– Databases: M most efficiently encodes SQL commands

– Passphrases: M most efficiently encodes English words

• M gives a semantically meaningful representation 
but, in the limit of long strings, CK becomes 
independent of this representation

– A universal Turing machine can emulate any other via a 
finite interpreter (e.g., an English word table)



To quantify confidence in a generic 
program, must bound what attacker knows

• If attacker grasps program semantics in a way 
defender does not, then attacker can embed this 
“key” in M and zero in on promising inputs that 
seem high-complexity (unguessable) to defender

– Shows the limits of fuzzing (effective undecidability)

• Henceforth assume that defender and attacker 
share the same semantic understanding and thus 
employ essentially the same decompressor M

– This seems plausible for very complex programs, and 
enables fuzzing to characterize security statistically

• Define Kolmogorov complexity of inputs via this 
common representation



Kolmogorov complexity
organizes the input space

• Inputs that have a 
simple description 
(relative to 
available 
information) 
should be targeted 
for defender 
coverage because 
they form a 
smaller “corner” 
space (also more 
attractive to 
attacker)



Kolmogorov complexity
organizes the input space

• Inputs that have a 
simple description 
(relative to 
available 
information) 
should be targeted 
for defender 
coverage because 
they form a 
smaller “corner” 
space (also more 
attractive to 
attacker)



Complexity-based sampling
generates a “wedding cake” distribution

• Although CK is 
non-computable, 
descriptions of 
length k can be 
sampled, yielding 
inputs with CK ≤ k

• Because low CK is 
a small part of the 
space, there is no 
advantage to 
undersampling 
there; instead, 
tiers pile up

Tier N:
All N-bit

descriptions



Complexity-based sampling
generates a “wedding cake” distribution

• Although CK is 
non-computable, 
descriptions of 
length k can be 
sampled, yielding 
inputs with CK ≤ k

• Because low CK is 
a small part of the 
space, there is no 
advantage to 
undersampling 
there; instead, 
tiers pile up

Tier N−1:
All (N−1)-bit
descriptions



Complexity-based sampling
generates a “wedding cake” distribution

• Although CK is 
non-computable, 
descriptions of 
length k can be 
sampled, yielding 
inputs with CK ≤ k

• Because low CK is 
a small part of the 
space, there is no 
advantage to 
undersampling 
there; instead, 
tiers pile up

Tier N−2:
All (N−2)-bit
descriptions



A statistical strategy for fuzzing
illustrates ability to quantify confidence

• Defender and attacker both can sample N-bit 
inputs from tiers k = 0, 1, …, N to locate faults

• Once program is deployed, attacker will find tier 
with highest fault rate and focus fuzzing there

• So defender wants to focus fault-patching effort 
on minimizing the maximum tier fault rate

• In tier k, after Rk random tests have yielded Fk

faults of which Pk have been patched, defender’s 
Bayesian estimate of tier fault rate is



A statistical strategy for fuzzing
illustrates ability to quantify confidence

• Defender samples each successive test from tier 
with current highest estimated fault rate

– Estimated fault rates decline due to increasing statistics 
and elimination of faults

– High confidence (even for large k) can be obtained
well short of exhaustive (2k) fuzzing effort

• Patching has negligible effect for large k but can 
dramatically reduce fault rates at small k

– Purging “weak passwords” from the system



Experiments with programs developed
by machine learning seem to corroborate

• Boolean networks (BNs) are a flexible 
representation of digital logic

• Create BN circuits to perform string recognition: 
output 1 for a particular “gold” input string and
0 for all other inputs

– A fault is a non-gold input that produces a 1

• Ensure objectivity and number of programs 
sufficient to gather meaningful statistics

– Create the programs automatically by machine learning

– Using a genetic algorithm (mutation and recombination) 
to arrive at implementations with small but non-zero 
fault rates representative of more complex programs



These simple “grown” programs give
a preliminary example of fault statistics

• 16-bit string recognizer has small enough input space 
for exhaustive fuzzing

• Model for machine M:
an edit function based
on the gold string,
initially using bitwise
edits (approximate CK

by Hamming distance)

• As expected, faults are
most common close to
the gold string


