

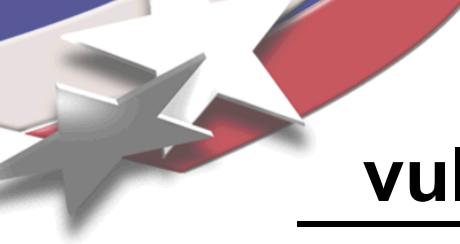
Tradeoffs in Targeted Fuzzing of Cyber Systems by Defenders and Attackers

12 October 2011

**Jackson R. Mayo and Robert C. Armstrong
Sandia National Laboratories, Livermore, CA**

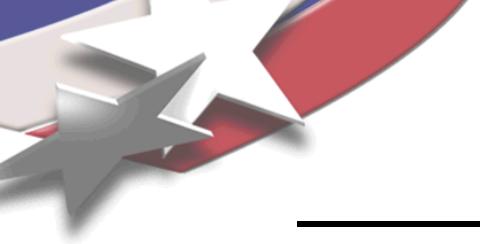
**Benjamin G. Davis
University of California, Davis, CA**

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



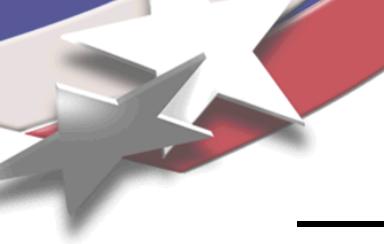
Fuzzing can locate faults and vulnerabilities in complex cyber systems

- **Fuzzing is automated randomized testing that samples vast input spaces to assess security**
 - Widely applicable, including for smart-grid devices
- **Fuzzing can operate on a black-box system but can also benefit from system understanding**
 - Complements analytical approaches that *reason* about the system (formal methods and complexity theory)
- **Effective fuzzing uses a targeted (non-uniform) distribution of test inputs**
- **Key questions:**
 - How should the sampling be targeted?
 - How can the resulting confidence be quantified?



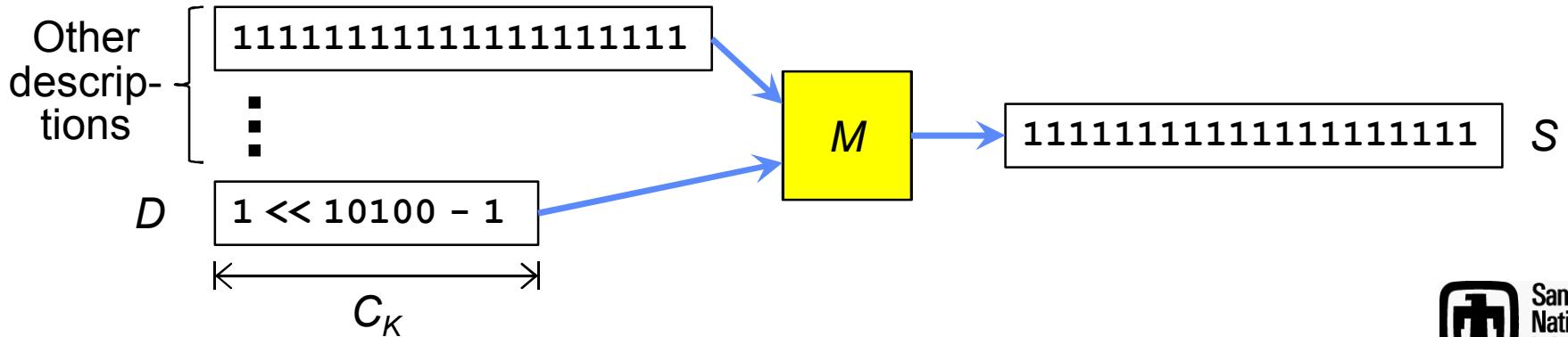
Seek a relevant measure to organize the input space

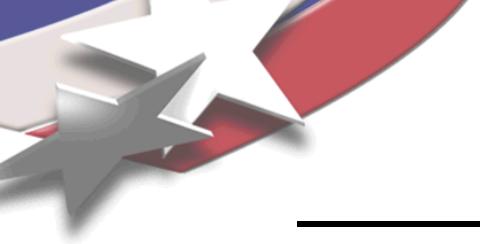
- A cyber system is taken as a general program
- Ultimately, the inputs of greatest interest – likely faults – are determined by the *semantics* of the program
- Some inputs are “simpler” than others in the natural representation that the program induces
- These simpler inputs are expected to be the most valuable fuzzing targets for defender and attacker
 - Precedent 1: fuzzing by mutation of normal inputs
 - Precedent 2: cracking of low-entropy passwords
- There is a rigorous notion of how “simple” a bit string is...



Kolmogorov complexity distinguishes “natural” bit strings from noise

- Given some universal Turing machine M :
Kolmogorov complexity C_K of string S is length of shortest string D that, when fed to M , produces S
- D is shortest “description” of S with respect to M
 - D is a “program” that runs on machine M to yield S
- C_K is non-computable, but almost all N -bit strings have $C_K \approx N$ (“algorithmically random”)
- Notional example showing low-complexity string:



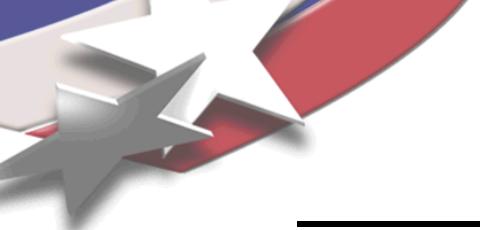


Kolmogorov complexity is relative but “asymptotically absolute”

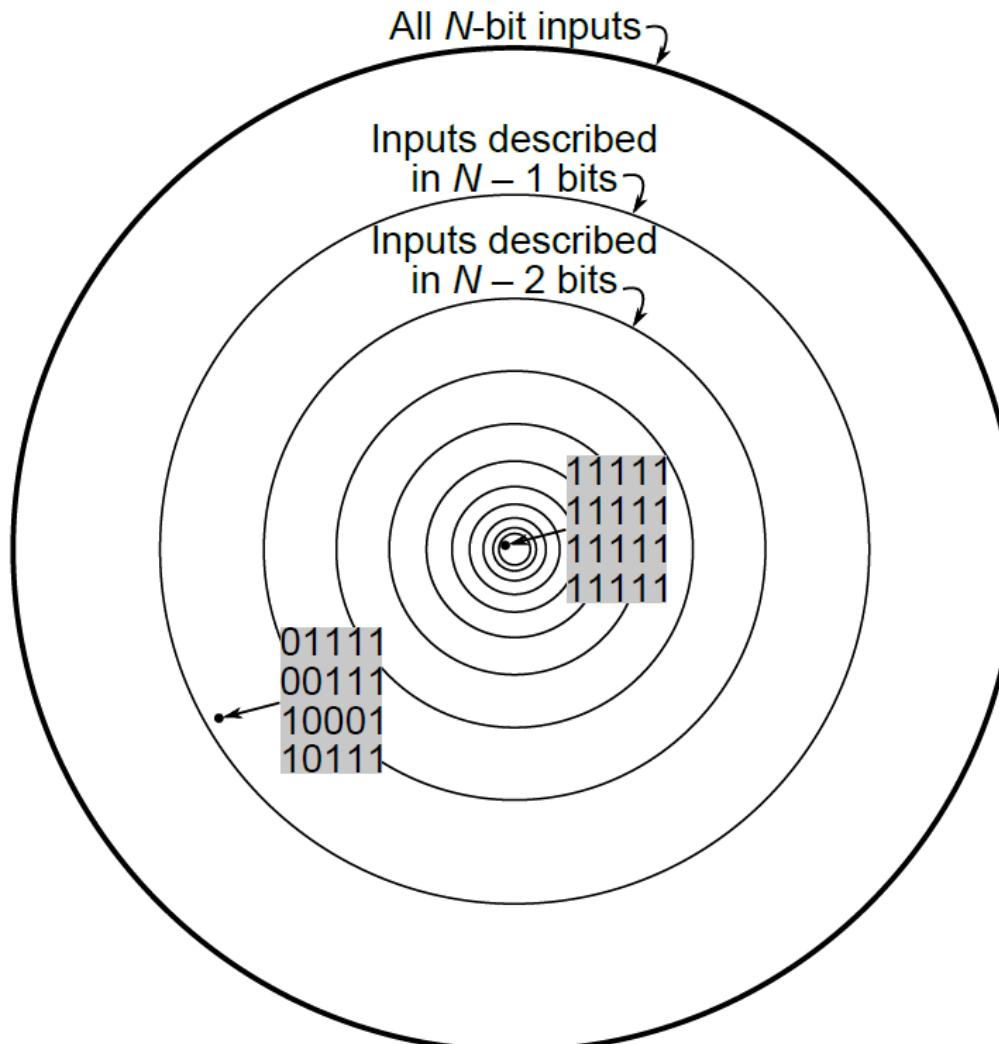
- **View S as an input to the program being fuzzed**
 - Low C_K means S is “simple” and favored for sampling
- **Value of C_K depends on the Turing machine M , which is a “decompressor” that should reflect a natural input encoding for the program – e.g.:**
 - Databases: M most efficiently encodes SQL commands
 - Passphrases: M most efficiently encodes English words
- **M gives a semantically meaningful representation but, in the limit of long strings, C_K becomes independent of this representation**
 - A universal Turing machine can emulate any other via a *finite* interpreter (e.g., an English word table)

To quantify confidence in a generic program, must bound what attacker knows

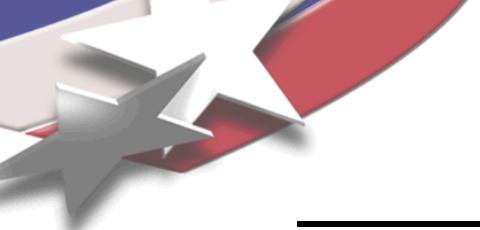
- If attacker grasps program semantics in a way defender does not, then attacker can embed this “key” in M and zero in on promising inputs that seem *high-complexity* (unguessable) to defender
 - Shows the limits of fuzzing (effective undecidability)
- Henceforth assume that defender and attacker share the same semantic understanding and thus employ essentially the same decompressor M
 - This seems plausible for very complex programs, and enables fuzzing to characterize security statistically
- Define Kolmogorov complexity of inputs via this common representation



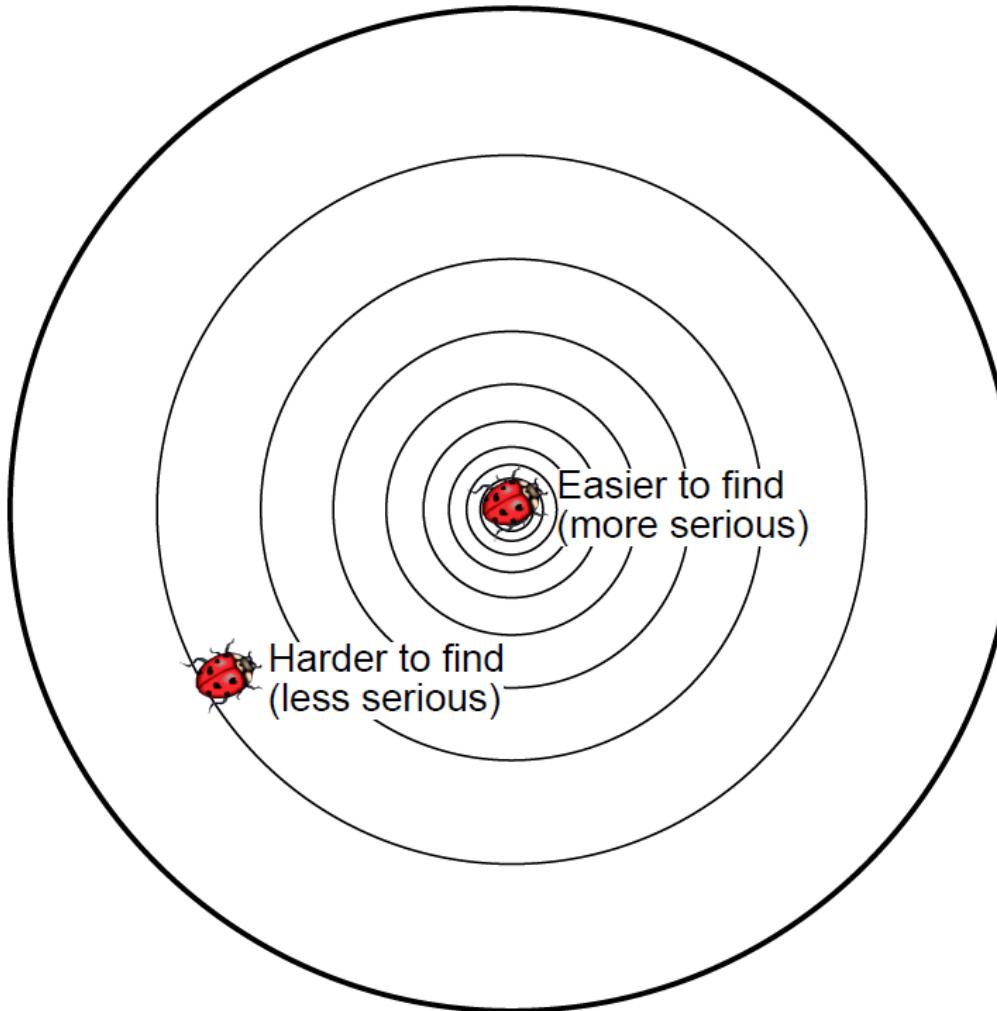
Kolmogorov complexity organizes the input space



- Inputs that have a simple description (relative to available information) should be targeted for defender coverage because they form a smaller “corner” space (also more attractive to attacker)

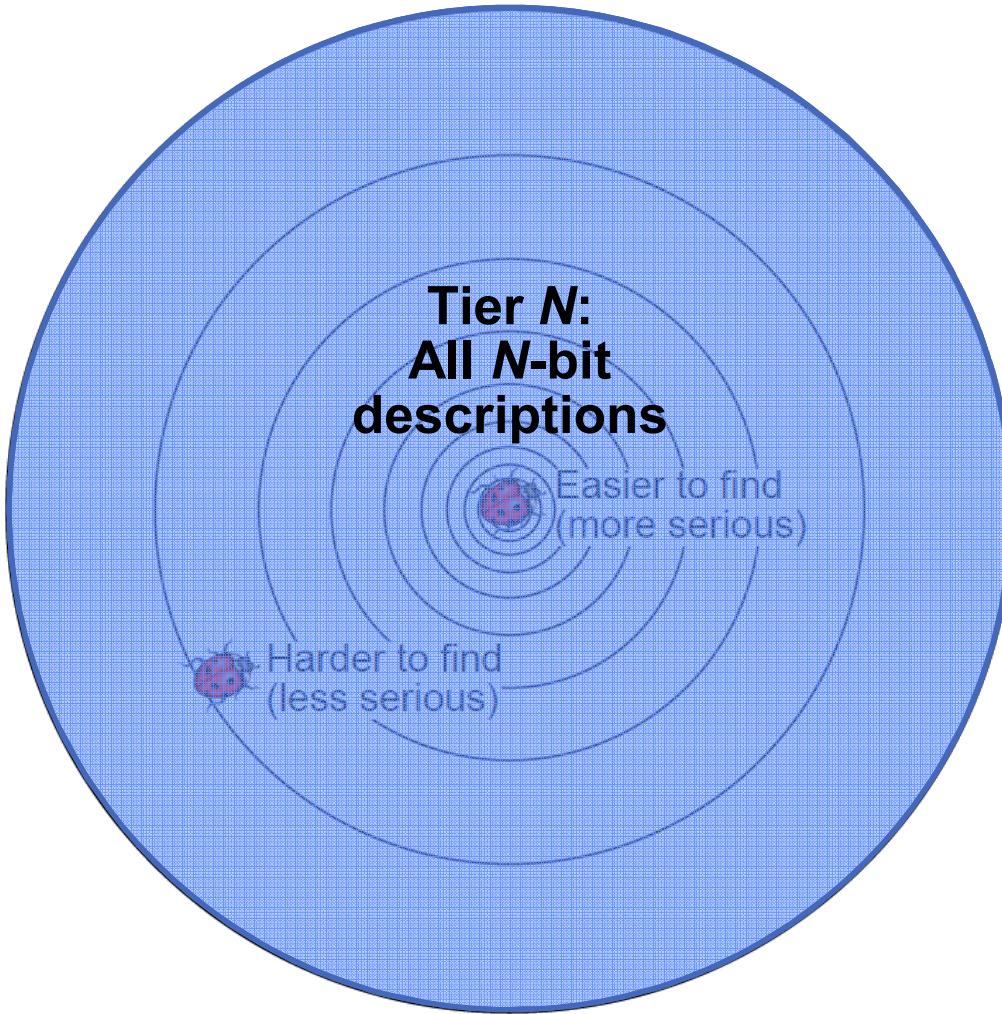


Kolmogorov complexity organizes the input space



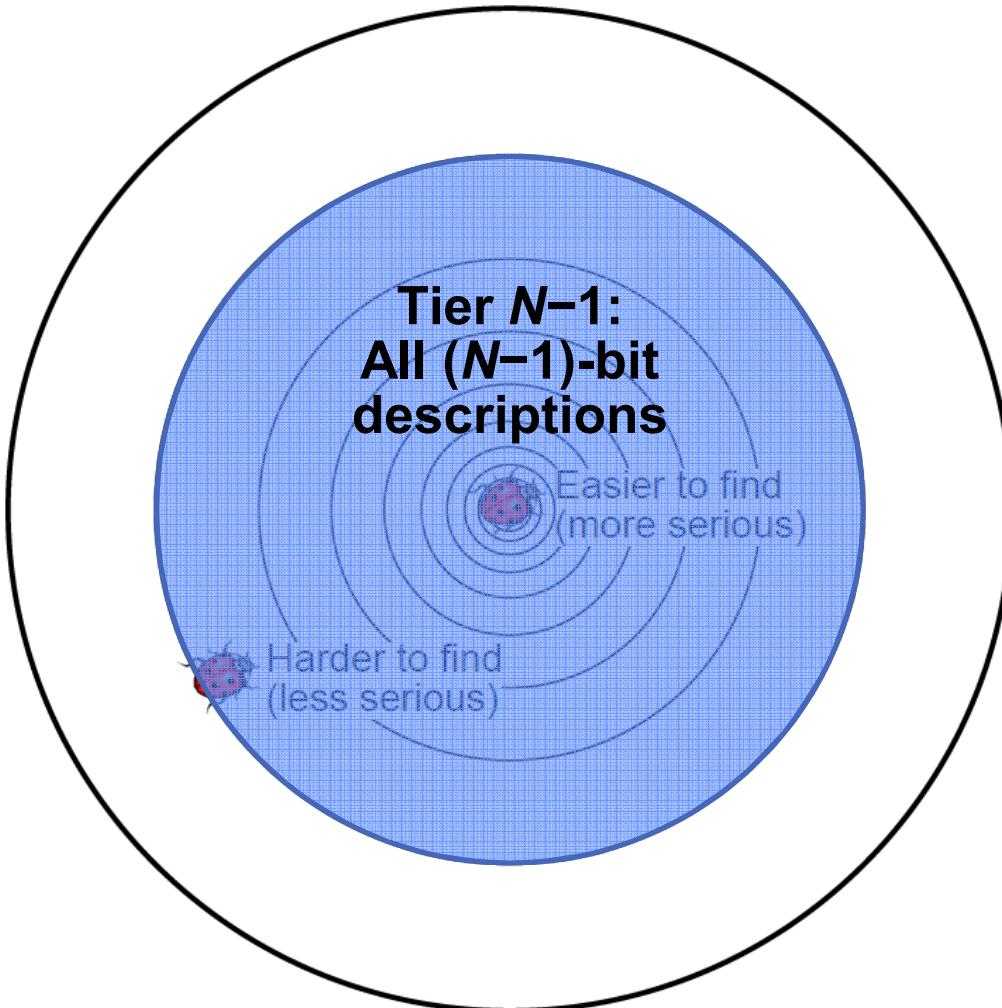
- Inputs that have a simple description (relative to available information) should be targeted for defender coverage because they form a smaller “corner” space (also more attractive to attacker)

Complexity-based sampling generates a “wedding cake” distribution



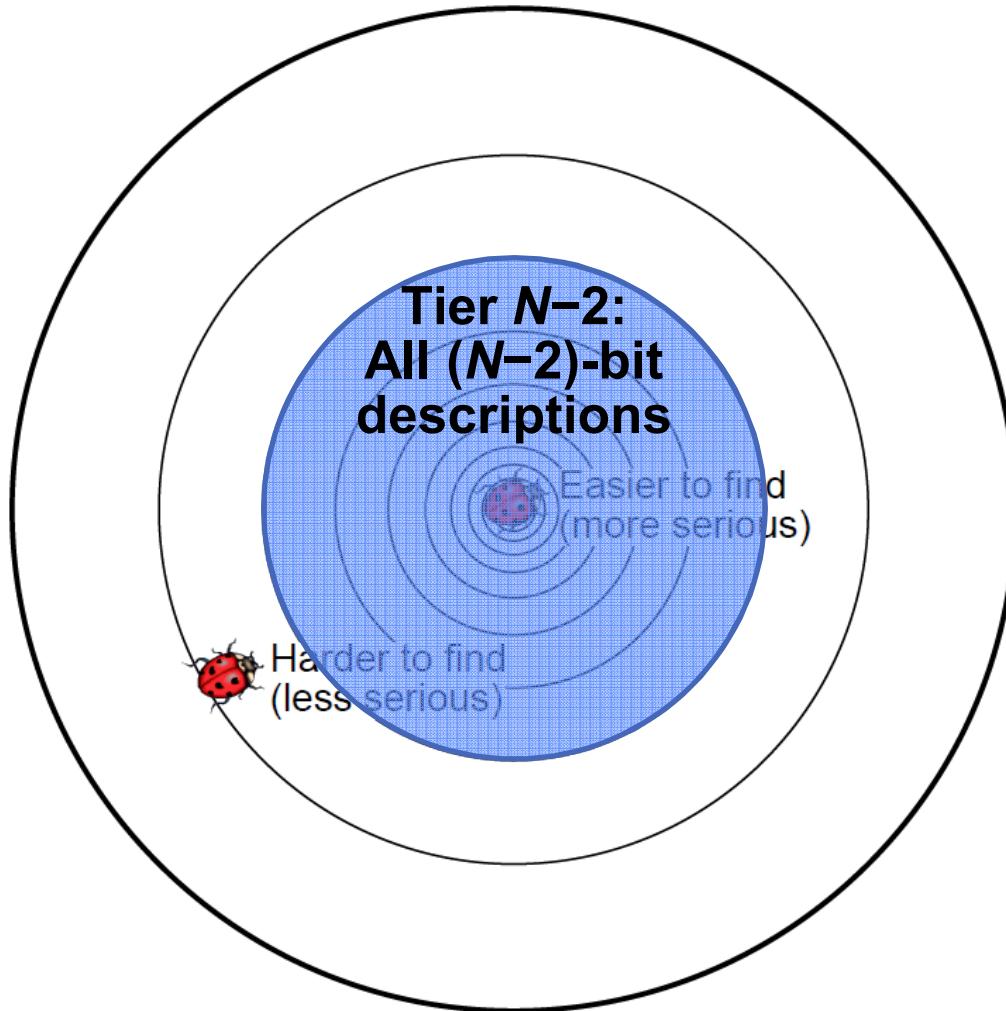
- Although C_K is non-computable, descriptions of length k can be sampled, yielding inputs with $C_K \leq k$
- Because low C_K is a small part of the space, there is no advantage to *undersampling* there; instead, tiers pile up

Complexity-based sampling generates a “wedding cake” distribution

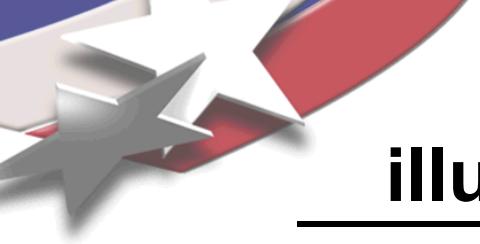


- Although C_K is non-computable, descriptions of length k can be sampled, yielding inputs with $C_K \leq k$
- Because low C_K is a small part of the space, there is no advantage to *undersampling* there; instead, tiers pile up

Complexity-based sampling generates a “wedding cake” distribution



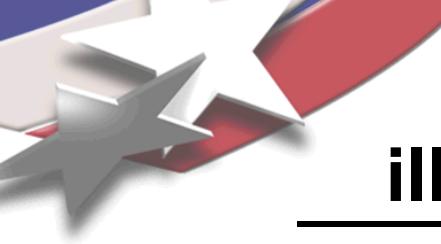
- Although C_K is non-computable, descriptions of length k can be sampled, yielding inputs with $C_K \leq k$
- Because low C_K is a small part of the space, there is no advantage to *undersampling* there; instead, tiers pile up



A statistical strategy for fuzzing illustrates ability to quantify confidence

- Defender and attacker both can sample N -bit inputs from tiers $k = 0, 1, \dots, N$ to locate faults
- Once program is deployed, attacker will find tier with highest fault rate and focus fuzzing there
- So defender wants to focus fault-patching effort on *minimizing the maximum tier fault rate*
- In tier k , after R_k random tests have yielded F_k faults of which P_k have been patched, defender's Bayesian estimate of tier fault rate is

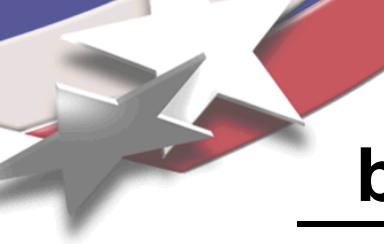
$$\langle f_k \rangle = \frac{2^k - R_k}{2^k} \frac{F_k + 1}{R_k + 2} + \frac{F_k - P_k}{2^k}$$



A statistical strategy for fuzzing illustrates ability to quantify confidence

- **Defender samples each successive test from tier with current highest estimated fault rate**
 - Estimated fault rates decline due to increasing statistics and elimination of faults
 - High confidence (even for large k) can be obtained well short of exhaustive (2^k) fuzzing effort
- **Patching has negligible effect for large k but can dramatically reduce fault rates at small k**
 - Purging “weak passwords” from the system

$$\langle f_k \rangle = \frac{2^k - R_k}{2^k} \frac{F_k + 1}{R_k + 2} + \frac{F_k - P_k}{2^k}$$



Experiments with programs developed by machine learning seem to corroborate

- Boolean networks (BNs) are a flexible representation of digital logic
- Create BN circuits to perform string recognition: output 1 for a particular “gold” input string and 0 for all other inputs
 - A fault is a non-gold input that produces a 1
- Ensure objectivity and number of programs sufficient to gather meaningful statistics
 - Create the programs automatically by machine learning
 - Using a genetic algorithm (mutation and recombination) to arrive at implementations with small but non-zero fault rates representative of more complex programs

These simple “grown” programs give a preliminary example of fault statistics

- 16-bit string recognizer has small enough input space for **exhaustive fuzzing**
- Model for machine M : an edit function based on the **gold string**, initially using bitwise edits (approximate C_K by Hamming distance)
- As expected, faults are most common close to the **gold string**

