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P Fuzzing can locate faults and
# vulnerabilities in complex cyber systems

* Fuzzing is automated randomized testing that
samples vast input spaces to assess security

— Widely applicable, including for smart-grid devices

* Fuzzing can operate on a black-box system but
can also benefit from system understanding

— Complements analytical approaches that reason about
the system (formal methods and complexity theory)

- Effective fuzzing uses a targeted (non-uniform)
distribution of test inputs

* Key questions:
— How should the sampling be targeted?
— How can the resulting confidence be quantified?
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Seek a relevant measure to

A
? organize the input space

* A cyber system is taken as a general program

 Ultimately, the inputs of greatest interest — likely
faults — are determined by the semantics of the
program

 Some inputs are “simpler” than others in the
natural representation that the program induces

* These simpler inputs are expected to be the most
valuable fuzzing targets for defender and attacker

— Precedent 1: fuzzing by mutation of normal inputs
— Precedent 2: cracking of low-entropy passwords

* There is a rigorous notion of how “simple” a bit

string is...
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Kolmogorov complexity distinguishes

AL
? “natural” bit strings from noise

* Given some universal Turing machine M:
Kolmogorov complexity C, of string S is length of
shortest string D that, when fed to M, produces S

* D is shortest “description” of S with respect to
— D is a “program” that runs on machine M to yield S

» Cx is non-computable, but almost all N-bit strings
have C, = N (“algorithmically random”)

* Notional example showing low-complexity string:

descrip-
tions

Other { 11111111111111111111

]
- M 11111111111111111111 | S

D 1<<10100-1

& AN
71

| .
Sandia
CK @ National
Laboratories




V
P ' Kolmogorov complexity is relative
but “asymptotically absolute”
* View S as an input to the program being fuzzed
— Low C, means S is “simple” and favored for sampling
 Value of C, depends on the Turing machine M,

which is a “decompressor’” that should reflect a
natural input encoding for the program — e.g.:

— Databases: M most efficiently encodes SQL commands
— Passphrases: M most efficiently encodes English words
* M gives a semantically meaningful representation

but, in the limit of long strings, C, becomes
independent of this representation

— A universal Turing machine can emulate any other via a
finite interpreter (e.g., an English word table)
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To quantify confidence in a generic

-~
? program, must bound what attacker knows

- If attacker grasps program semantics in a way
defender does not, then attacker can embed this
“key” in M and zero in on promising inputs that
seem high-complexity (unguessable) to defender

— Shows the limits of fuzzing (effective undecidability)
* Henceforth assume that defender and attacker

share the same semantic understanding and thus
employ essentially the same decompressor W

— This seems plausible for very complex programs, and
enables fuzzing to characterize security statistically

* Define Kolmogorov complexity of inputs via this
common representation
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Kolmogorov complexity
organizes the input space

All N-bit inputs

 Inputs that have a
simple description
(relative to
available
information)
should be targeted
for defender
coverage because
they form a
smaller “corner”
space (also more
attractive to
attacker)

Inputs described
in N — 1 bits

nputs described
in N — 2 bits
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Kolmogorov complexity

-
#' organizes the input space

Easier to find
(more serious

ot Harder to find/
Y (less serious)

 Inputs that have a

simple description
(relative to
available
information)
should be targeted
for defender
coverage because
they form a
smaller “corner”
space (also more
attractive to
attacker)
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Complexity-based sampling
generates a “wedding cake” distribution

* Although C is
non-computable,
descriptions of
length k can be
sampled, yielding
inputs with C, < k

- Because low Cy is
a small part of the
space, there is no
advantage to
undersampling
there; instead,
tiers pile up
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P A statistical strategy for fuzzing
# illustrates ability to quantify confidence

* Defender and attacker both can sample N-bit
inputs from tiers k=0, 1, ..., N to locate faults

* Once program is deployed, attacker will find tier
with highest fault rate and focus fuzzing there

* So defender wants to focus fault-patching effort
on minimizing the maximum tier fault rate

* In tier k, after R, random tests have yielded F,
faults of which P, have been patched, defender’s
Bayesian estimate of tier fault rate is

o8 R, FL.+1 F.— P,

i) = =55 R, +2 ' 9K
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P A statistical strategy for fuzzing
| illustrates ability to quantify confidence

* Defender samples each successive test from tier
with current highest estimated fault rate

— Estimated fault rates decline due to increasing statistics
and elimination of faults

— High confidence (even for large k) can be obtained
well short of exhaustive (2k) fuzzing effort

« Patching has negligible effect for large k but can
dramatically reduce fault rates at small k

— Purging “weak passwords” from the system

o8 R, FL.+1 F.— P,

i) = =55 R, +2 ' 9K
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P Experiments with programs developed
# by machine learning seem to corroborate

* Boolean networks (BNs) are a flexible
representation of digital logic

 Create BN circuits to perform string recognition:
output 1 for a particular “gold” input string and
0 for all other inputs

— A fault is a non-gold input that produces a 1
* Ensure objectivity and number of programs
sufficient to gather meaningful statistics
— Create the programs automatically by machine learning

— Using a genetic algorithm (mutation and recombination)
to arrive at implementations with small but non-zero
fault rates representative of more complex programs
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"'I'hese simple “grown” programs give

a preliminary example of fault statistics

» 16-bit string recognizer has small enough input space
for exhaustive fuzzing

* Model for machine M: 0.6
an edit function based
on the gold string,
initially using bitwise
edits (approximate C,
by Hamming distance)

* As expected, faults are
most common close to
the gold string % 2 4 s 8 10 12

Tier (maximum Hamming distance)
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