.
. i SAND2011- 7533C

Tradeoffs in Targeted Fuzzing of Cyber Systems
by Defenders and Attackers

12 October 2011

Jackson R. Mayo and Robert C. Armstrong
Sandia National Laboratories, Livermore, CA

Benjamin G. Davis
University of California, Davis, CA

Sandia National Laboratories is a multiprogram laboratory operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the United States Department of Energy’s National @ Sandia

Nuclear Security Administration under contract DE-AC04-94AL85000. National
Laboratories

P Fuzzing can locate faults and
vulnerabilities in complex cyber systems

* Fuzzing is automated randomized testing that
samples vast input spaces to assess security

— Widely applicable, including for smart-grid devices

* Fuzzing can operate on a black-box system but
can also benefit from system understanding

— Complements analytical approaches that reason about
the system (formal methods and complexity theory)

- Effective fuzzing uses a targeted (non-uniform)
distribution of test inputs

* Key questions:
— How should the sampling be targeted?
— How can the resulting confidence be quantified?

Sandia
National
Laboratories

Seek a relevant measure to

A
? organize the input space

* A cyber system is taken as a general program

 Ultimately, the inputs of greatest interest — likely
faults — are determined by the semantics of the
program

 Some inputs are “simpler” than others in the
natural representation that the program induces

* These simpler inputs are expected to be the most
valuable fuzzing targets for defender and attacker

— Precedent 1: fuzzing by mutation of normal inputs
— Precedent 2: cracking of low-entropy passwords

* There is a rigorous notion of how “simple” a bit

string is...
@ Sandia
National
Laboratories

Kolmogorov complexity distinguishes

AL
? “natural” bit strings from noise

* Given some universal Turing machine M:
Kolmogorov complexity C, of string S is length of
shortest string D that, when fed to M, produces S

* D is shortest “description” of S with respect to
— D is a “program” that runs on machine M to yield S

» Cx is non-computable, but almost all N-bit strings
have C, = N (“algorithmically random”)

* Notional example showing low-complexity string:

descrip-
tions

Other { 11111111111111111111

]
- M 11111111111111111111 | S

D 1<<10100-1

& AN
71

| .
Sandia
CK @ National
Laboratories

V
P ' Kolmogorov complexity is relative
but “asymptotically absolute”
* View S as an input to the program being fuzzed
— Low C, means S is “simple” and favored for sampling
 Value of C, depends on the Turing machine M,

which is a “decompressor’” that should reflect a
natural input encoding for the program — e.g.:

— Databases: M most efficiently encodes SQL commands
— Passphrases: M most efficiently encodes English words
* M gives a semantically meaningful representation

but, in the limit of long strings, C, becomes
independent of this representation

— A universal Turing machine can emulate any other via a
finite interpreter (e.g., an English word table)
@ Sandia
National
Laboratories

To quantify confidence in a generic

-~
? program, must bound what attacker knows

- If attacker grasps program semantics in a way
defender does not, then attacker can embed this
“key” in M and zero in on promising inputs that
seem high-complexity (unguessable) to defender

— Shows the limits of fuzzing (effective undecidability)
* Henceforth assume that defender and attacker

share the same semantic understanding and thus
employ essentially the same decompressor W

— This seems plausible for very complex programs, and
enables fuzzing to characterize security statistically

* Define Kolmogorov complexity of inputs via this
common representation
@ Sandia
National
Laboratories

Kolmogorov complexity
organizes the input space

All N-bit inputs

 Inputs that have a
simple description
(relative to
available
information)
should be targeted
for defender
coverage because
they form a
smaller “corner”
space (also more
attractive to
attacker)

Inputs described
in N — 1 bits

nputs described
in N — 2 bits

Sandia
National
Laboratories

Kolmogorov complexity

-
#' organizes the input space

Easier to find
(more serious

ot Harder to find/
Y (less serious)

 Inputs that have a

simple description
(relative to
available
information)
should be targeted
for defender
coverage because
they form a
smaller “corner”
space (also more
attractive to
attacker)

Sandia
National
Laboratories

;’

Complexity-based sampling
generates a “wedding cake” distribution

* Although C is
non-computable,
descriptions of
length k can be
sampled, yielding
inputs with C, < k

- Because low Cy is
a small part of the
space, there is no
advantage to
undersampling
there; instead,
tiers pile up

Sandia
National
Laboratories

o

Complexity-based sampling
generates a “wedding cake” distribution

* Although C is
non-computable,
descriptions of
length k can be
sampled, yielding
inputs with C, < k

- Because low Cy is
a small part of the
space, there is no
advantage to
undersampling
there; instead,
tiers pile up

Sandia
National
Laboratories

;,.7

Complexity-based sampling
generates a “wedding cake” distribution

* Although C is
non-computable,
descriptions of
length k can be
sampled, yielding
inputs with C, < k

- Because low Cy is
a small part of the
space, there is no
advantage to
undersampling
there; instead,
tiers pile up

Sandia
National
Laboratories

P A statistical strategy for fuzzing
illustrates ability to quantify confidence

* Defender and attacker both can sample N-bit
inputs from tiers k=0, 1, ..., N to locate faults

* Once program is deployed, attacker will find tier
with highest fault rate and focus fuzzing there

* So defender wants to focus fault-patching effort
on minimizing the maximum tier fault rate

* In tier k, after R, random tests have yielded F,
faults of which P, have been patched, defender’s
Bayesian estimate of tier fault rate is

o8 R, FL.+1 F.— P,

i) = =55 R, +2 ' 9K

Sandia
National
Laboratories

P A statistical strategy for fuzzing
| illustrates ability to quantify confidence

* Defender samples each successive test from tier
with current highest estimated fault rate

— Estimated fault rates decline due to increasing statistics
and elimination of faults

— High confidence (even for large k) can be obtained
well short of exhaustive (2k) fuzzing effort

« Patching has negligible effect for large k but can
dramatically reduce fault rates at small k

— Purging “weak passwords” from the system

o8 R, FL.+1 F.— P,

i) = =55 R, +2 ' 9K

Sandia
National
Laboratories

P Experiments with programs developed
by machine learning seem to corroborate

* Boolean networks (BNs) are a flexible
representation of digital logic

 Create BN circuits to perform string recognition:
output 1 for a particular “gold” input string and
0 for all other inputs

— A fault is a non-gold input that produces a 1
* Ensure objectivity and number of programs
sufficient to gather meaningful statistics
— Create the programs automatically by machine learning

— Using a genetic algorithm (mutation and recombination)
to arrive at implementations with small but non-zero
fault rates representative of more complex programs

Sandia
National
Laboratories

"'I'hese simple “grown” programs give

a preliminary example of fault statistics

» 16-bit string recognizer has small enough input space
for exhaustive fuzzing

* Model for machine M: 0.6
an edit function based
on the gold string,
initially using bitwise
edits (approximate C,
by Hamming distance)

* As expected, faults are
most common close to
the gold string % 2 4 s 8 10 12

Tier (maximum Hamming distance)

Sandia
National
Laboratories

© O O
w IN o

Fault rate

O
N

