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Fuzzing can locate faults and
vulnerabilities in complex cyber systems

• Fuzzing is automated randomized testing that 
samples vast input spaces to assess security

– Widely applicable, including for smart-grid devices

• Fuzzing can operate on a black-box system but 
can also benefit from system understanding

– Complements analytical approaches that reason about 
the system (formal methods and complexity theory)

• Effective fuzzing uses a targeted (non-uniform) 
distribution of test inputs

• Key questions:

– How should the sampling be targeted?

– How can the resulting confidence be quantified?



Seek a relevant measure to
organize the input space

• A cyber system is taken as a general program

• Ultimately, the inputs of greatest interest – likely 
faults – are determined by the semantics of the 
program

• Some inputs are “simpler” than others in the 
natural representation that the program induces

• These simpler inputs are expected to be the most 
valuable fuzzing targets for defender and attacker

– Precedent 1: fuzzing by mutation of normal inputs

– Precedent 2: cracking of low-entropy passwords

• There is a rigorous notion of how “simple” a bit 
string is…



Kolmogorov complexity distinguishes 
“natural” bit strings from noise

• Given some universal Turing machine M: 
Kolmogorov complexity CK of string S is length of 
shortest string D that, when fed to M, produces S

• D is shortest “description” of S with respect to M

– D is a “program” that runs on machine M to yield S

• CK is non-computable, but almost all N-bit strings 
have CK ≈ N (“algorithmically random”)

• Notional example showing low-complexity string:

11111111111111111111

1 << 10100 - 1

M 11111111111111111111
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Kolmogorov complexity is relative
but “asymptotically absolute”

• View S as an input to the program being fuzzed

– Low CK means S is “simple” and favored for sampling

• Value of CK depends on the Turing machine M, 
which is a “decompressor” that should reflect a 
natural input encoding for the program – e.g.:

– Databases: M most efficiently encodes SQL commands

– Passphrases: M most efficiently encodes English words

• M gives a semantically meaningful representation 
but, in the limit of long strings, CK becomes 
independent of this representation

– A universal Turing machine can emulate any other via a 
finite interpreter (e.g., an English word table)



To quantify confidence in a generic 
program, must bound what attacker knows

• If attacker grasps program semantics in a way 
defender does not, then attacker can embed this 
“key” in M and zero in on promising inputs that 
seem high-complexity (unguessable) to defender

– Shows the limits of fuzzing (effective undecidability)

• Henceforth assume that defender and attacker 
share the same semantic understanding and thus 
employ essentially the same decompressor M

– This seems plausible for very complex programs, and 
enables fuzzing to characterize security statistically

• Define Kolmogorov complexity of inputs via this 
common representation



Kolmogorov complexity
organizes the input space

• Inputs that have a 
simple description 
(relative to 
available 
information) 
should be targeted 
for defender 
coverage because 
they form a 
smaller “corner” 
space (also more 
attractive to 
attacker)
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Complexity-based sampling
generates a “wedding cake” distribution

• Although CK is 
non-computable, 
descriptions of 
length k can be 
sampled, yielding 
inputs with CK ≤ k

• Because low CK is 
a small part of the 
space, there is no 
advantage to 
undersampling 
there; instead, 
tiers pile up

Tier N:
All N-bit

descriptions
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A statistical strategy for fuzzing
illustrates ability to quantify confidence

• Defender and attacker both can sample N-bit 
inputs from tiers k = 0, 1, …, N to locate faults

• Once program is deployed, attacker will find tier 
with highest fault rate and focus fuzzing there

• So defender wants to focus fault-patching effort 
on minimizing the maximum tier fault rate

• In tier k, after Rk random tests have yielded Fk

faults of which Pk have been patched, defender’s 
Bayesian estimate of tier fault rate is



A statistical strategy for fuzzing
illustrates ability to quantify confidence

• Defender samples each successive test from tier 
with current highest estimated fault rate

– Estimated fault rates decline due to increasing statistics 
and elimination of faults

– High confidence (even for large k) can be obtained
well short of exhaustive (2k) fuzzing effort

• Patching has negligible effect for large k but can 
dramatically reduce fault rates at small k

– Purging “weak passwords” from the system



Experiments with programs developed
by machine learning seem to corroborate

• Boolean networks (BNs) are a flexible 
representation of digital logic

• Create BN circuits to perform string recognition: 
output 1 for a particular “gold” input string and
0 for all other inputs

– A fault is a non-gold input that produces a 1

• Ensure objectivity and number of programs 
sufficient to gather meaningful statistics

– Create the programs automatically by machine learning

– Using a genetic algorithm (mutation and recombination) 
to arrive at implementations with small but non-zero 
fault rates representative of more complex programs



These simple “grown” programs give
a preliminary example of fault statistics

• 16-bit string recognizer has small enough input space 
for exhaustive fuzzing

• Model for machine M:
an edit function based
on the gold string,
initially using bitwise
edits (approximate CK

by Hamming distance)

• As expected, faults are
most common close to
the gold string


