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Preconditioning for Mixed Finite
Element Formulations of Elliptic
Problems

Tim Wildey! and Guangri Xue?

Summary. In this paper, we discuss a preconditioning technique for mixed
finite element discretizations of elliptic equations. The technique is based on
a block-diagonal approximation of the mass matrix which maintains the spar-
sity and positive definiteness of the corresponding Schur complement. This
preconditioner arises from the multipoint flux mixed finite element method
and is robust with respect to mesh size and is better conditioned for full per-
meability tensors than a preconditioner based on a diagonal approximation
of the mass matrix..

1 Introduction

Consider the mixed formulation of a second order linear elliptic equation.
Introducing a flux variable, we solve for a scalar potential p and a vector
function u that satisfy

u=-KVp in £, (1)
V-u=f in (2, (2)
p=0 on 012, (3)

where {2 is a polygonal domain with Lipschitz continuous boundary and K is
a symmetric and uniformly positive definite tensor with L°°({2) components.
Homogeneous Dirichlet boundary conditions are considered for the simplicity
of the presentation.

Mixed finite element methods lead to the non-singular indefinite system:
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where the matrix A is a symmetric and positive definite.
In this paper, we consider preconditioners of the form:

M = @BOT). (5)

The applicability of this type preconditioner is due to the fact that

o Ais easily invertible. .
e The Schur complement of the preconditioner M is spare and positive def-
inite, and can be solved easily.

One way is choosing Aasa diagonal matrix. In [1], Ais given as wl. The
global parameter w is chosen to minimize the spectral radius of I — M~1M.
In [5], the diagonal matrix is optimally scaled at element level and a precise
upper bound of the spectral radius has been shown: p(I — M~'M) < 1/2.
In other words, the preconditioner is independent of both the mesh size and
the tensor K. This uniformity is derived when the problem has a diagonal K
and is discretized the lowest order Raviart-Thomas [8] mixed finite element
on rectangular grids. For other mixed finite element spaces or full tensor
K, the uniformity result is not clearly understood. Alternatively, a simple
parameter-free choice for A, A = Diag(A), can be used.

Another approach is to take Aasa block-diagonal matrix which guarantees
that the corresponding Schur complement matrix is sparse and positive defi-
nite. Multipoint flux mixed finite element (MFMFE) methods [12, 6, 9, 11, 10]
give matrices of the form (5), where the flux variable can be locally elimi-
nated due to the block-diagonal structure of A. The corresponding Schur
complement gives a cell-centered stencil for the scalar variable. In this pa-
per, we study the performance of this MEMFE operator as a preconditioner.
The Schur complement of MFMFE has 9-point stencil on logically rectan-
gular grids and with full tensor K in contrast to 5-point stencil which arises
if A is a diagonal matrix. However, our numerical result indicates that the
MFMFE method gives a better preconditioner than the diagonal precondi-
tioner (A = Diag(A)). A natural extension of this work is the use of approxi-
mate preconditioners based on algebraic multigrid for MFMFE as described
in [2, 7] and will be the subject of future work.

The rest of the paper is organized as follows. Mixed finite element formu-
lation is described in Section 2. A block type preconditioner is discussed in
in Section 3. Finally in Section 4, numerical experiments are given.

2 Mixed Finite Element Formulation

Define H(div; 2) := {v € (L*(2))?: V-v € L?(2)} and let (-, -) denote the
inner product in L2(£2). Let X < () Y denote that there exists a constant
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C, independent of the mesh size h, such that X < (>) CY. The notation
X =Y means that both X <Y and X 2 Y hold.

Let 7 be a finite element partition of the domain {2 consisting of either
triangles or quadrilaterals. We assume that 7j is shape-regular in the sense
of Ciarlet [4]. The finite element spaces on any physical element E € T;, are
defined via the Piola transformation

1
Vo viv=—DFgvo Fyl,
JE

and the scalar transformation
N ~ -1
W Wi w=woFg,

where Fg denotes a mapping from the reference element E to the physical
element F/, DFg is the Jacobian of Fg, and Jg is its determinant. The finite
element spaces V}, and W, on T}, are given by

Vh:{veH(div;Q): vlg & v, veV(B), VEGE}7

Wh:{weL2(9); wlg & 0, B € W(E), VEeTh},

where V(F) and W (E) are the lowest order Brezzi-Douglas-Marini (BDM])
spaces on the reference element E. Definitions of Piola transformation and
BDM; spaces yield V}, C H(div; 2) and W, C L?(2).

The finite element method reads: find u; € V;, and p,, € W}, such that

(K~ up,v) — (pn, V-v) =0, Vv € Va, (6)
—(V-up,w) = —(f,w) YweW,. (7)

The method (6)-(7) can have second order convergence for the flux and first
order convergence for the scalar potential [3] if u and p are sufficiently regular.

3 Preconditioning the Mixed Finite Element System

3.1 Multipoint Flux Mixed Finite Element

A family of multipoint flux mixed finite element (MFMFE) methods on var-
ious grids has been developed and analyzed [12, 6, 9, 11, 10]. The method is
defined as: find uy, € Vj, and p;, € Wj,, such that

(K™ 'up, v)g — (pn, V- v) =0, Vv € Vy, (8)
—(V-up,w) = —(f,w) Ywe W, 9)
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where the finite element spaces are BDM; on triangular and rectangular
meshes. Compared to the BDM; finite element method, a specific numerical
quadrature rule is employed. It is defined as:

(K 'q,v)g = Z (K'q,v)gr = Z Trap (Kq,V) 5 (10)

EcTh E€Th

where K on each E is defined as

1
K= J—DFEK (Fg(2))DFg, (11)
E
and the trapezoidal rule on E is denoted as

Em
;Z

=1

(12)

,_Q>
<>

Trap(q, v)

with {£;}7, being vertices of E and m is the number of vertices of E.

The degrees of freedom for the flux variable are chosen as the normal
components at two vertices on each edge. More specifically, denote the basis
functions associated with ©; by v;;, 7 = 1,2: (V;-0;5)(£;) = 1, (V450 ) (85) =
0,k # j, and (V;; - iy)(ty) = 0,1 # i, k = 1, 2. As a consequence, the
quadrature rule (10) couples only the two basis functions associated with a
vertex. For example, on the unit square

K11(t1)
4 )
(IC‘Aflh‘Afij)Q’E =0, 1 7é 1,7 =1,2,3,

Ka1(t1)
1 (13)

(K¥11,v11)g g = (K11, V12) g p =

where KC;; denotes i-th row and j-th column of the matrix function K. This
localization property on interactions between the flux basis functions gives
the assembled mass matrix in (8) has a block diagonal structure with one
block per grid vertex.

We denote the algebraic system arising from (8)-(9) as

() (0)-(2)

where A is block diagonal. The approximate flux, U, can be easily eliminated
via

U=-A,'B"P. (15)

The resulting Schur complement system

BA,'B"P = —F, (16)
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is symmetric positive definite and sparse. On rectangular grids, equation (16)
has 7 point stencil for a diagonal tensor K and 9 point stencil for the full
tensor. The Schur complement system can be solved using classical algebraic
multigrid methods. The flux variable is then obtained easily by (15) due to
the block diagonal structure of Ag.

The following result concerns the convergence of the MFMFE methods.

Theorem 1 ([12, 6, 11]). Let T;, consist of simplices, h*-parallelograms,
h2-parallelepipeds or triangular prisms. If K—! € W%’loo, then, the fluxz up
and scalar py, of the MFMFE method (8)—(9) satisfies

u—w| < Al
IV (u—up)| S AV -ull,
P = pall < Rllully + [p[l1)-

Compared to the second order L? convergence of the flux variable in the
BDM; mixed method, the MFMFE has a first order convergence for the flux
variable due to the numerical quadrature. However the MFMFE method is
a solver friendly scheme since the MFMFE method can be reduced to a cell-
centered stencil in terms of the scalar variable without solving a saddle-point
problem.

3.2 Multipoint Flux Mixed Finite Element as a
Preconditioner

The MFMFE method may be used as a preconditioner to the BDM; mixed
finite element method by choosing A = Ag.

Lemma 1. The condition number of ATA s independent of mesh size.

Proof. 1t has been shown [12, 6, 11] that the bilinear form (K™!-,-)¢ is an
inner product in V; and (K™ !q, q)lQ/ % is a norm equivalent to the L? norm.

Thus
(K 'q,9)q ~ [lall* = (K 'q,q), Vq€ V. (17)

The preconditioner of the form (5) has been analyzed by Ewing, Lazarov,
Lu and Vassilevski.

Theorem 2 ([5]). The eigenvalues of MM are real and positive and lie in
the interval [Amin, Amaz], Where Apin and Apmas are the extreme eigenvalues
of A71A.

By Lemma 1 and Theorem 2, we have the following corollary.

Corollary 1. The preconditioned system of BDM, mized finite element method
with MEMFE as a preconditioner is symmetric and positive definite. The con-
dition number is independent of mesh size.
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4 Numerical Results

4.1 Example 1

In this example, we consider (1)-(3) on the computational domain shown in
Fig. 1 (left) with p =0 on 92 and f = 1.
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Fig. 1 The triangular mesh used in Example 1 with h ~ 1/16 (left) and the log of the
heterogeneous permeability field (right).

First, we use the MFMFE method as a preconditioner of GMRES to solve
the BDM; mixed finite element method with K = I. The result are presented
in Table 1 where we can clearly see that the preconditioner is robust with
respect to the approximate mesh size h. Next, we consider the heterogeneous

h Degrees of Freedom cond(M~1M) Iterations

1/8 512 13.43 27
1/16 2048 15.84 27
1/32 8192 15.61 23
1/64 32768 15.63 20

Table 1 Performance of the MFMFE preconditioner with a homogeneous permeability
field.

permeabilty field shown in Fig. 1 (right) which is generated using geostatis-
tical techniques (kriging) with a longer correlation length in the horizontal
direction. In Table 2 we see that the preconditioner is not only robust with
respect to mesh size, but also with respect to the heterogeneities in the per-
meability.
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h Degrees of Freedom cond (M~ M) Iterations
1/8 512 20.07 31
1/16 2048 21.61 31
1/32 8192 16.61 27
1/64 32768 14.27 25

Table 2 Performance of the MFMFE preconditioner with a heterogeneous permeability
field.

4.2 Example 2

In this example, we consider (1)-(3) with 2 = [0,1] x [0, 1] and
_(l1+tal-«
K= <1 —al+ a) ’
with 0 < a < 1. We use uniform rectangular meshes and our objective is
to demonstrate that the MFMFE preconditioner is more robust as a — 0.

In Tables 3-4 we present the condition number of M 1M using the diagonal
We see that

preconditioner and the MFMFE preconditioner respectively.
o | h=1/4 h=1/8 h=1/16 h=1/32

1 22.43 22.32 22.32 22.32

1E-1 1.06E2 9.95E2 1.06E2 1.06E2

1E-2| 7.00E2 6.97E2 6.97TE2 6.97TE2

1E-3| 9.51E3 9.41E3 9.75E3 8.42E3

Table 3 Condition numbers of M ~1M using a diagonal preconditioner with various h

and a.

a | h=1/4 h=1/8 h=1/16 h=1/32

1 22.42 22.32 22.32 22.32
1E-1| 32,07 32.09 32.26 32.09
1E-2| 51.01 50.06 50.39 50.39
1E-3| 5.20E2 6.96E2 8.10E2  8.21E2

Table 4 Condition numbers of M ~!M using the MFMFE preconditioner with various h

and a.

both preconditioners are robust with respect to h, but degrade as a« — 0, but

the MFMFE preconditioner degrades at a much slower rate.
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