
Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy's National Nuclear Security Administration under contract

DE-AC04-94AL85000.

Challenges in the utilization of extreme-scale
high performance computers by quantum

chemistry applications

Pushing the Envelope: Computational Chemistry at the
Petascale and Beyond

242nd ACS National Meeting

Aug. 28 – Sep. 1, 2011

Denver, CA

Curtis Janssen, Sandia National Laboratories

cljanss@sandia.gov

Unlimited Release

SAND 2011-XXXXX

SAND2011-6111C

Challenges impacting exascale application
performance

Schroeder and Gibson, Journal of Physics: Conference
Series, 78 (2007) 012022, SciDAC 2007 Proceedings.

Generated using David A. Wheeler's 'SLOCCount'

Motivation: complexity of parallel machines is
accelerating, but tools to manage this are not

•Several complexity issues affect apps:

– Extreme parallelism

– More computation power enables more
complex/higher fidelity simulations

– More complex software

– Numerical issues

– Dropping mean time between failure

– Energy enters optimization objective function

• Human effort does not scale easily to such a complex environment

– Can another approach to programming solve some of these problems?

• Outline of current work:

– Hartree-Fock theory selected due to its expense and scaling issues

• Basis for many other electronic structure methods

– Examine traditional implementation of Hartree-Fock theory

– Show preliminary results of applying an alternative programming approach to
Hartree-Fock and compare this to traditional implementations.

Improvements to chip performance over the years

Illustration of numerical issues using
Hartree-Fock theory as an example

Large systems are ill-conditioned:
smallest overlap eigenvalue for
linear alkane rapidly decrease as
system grows for diffuse basis sets

Eliminating near linear dependencies
can change energies—even in the
limit of an exact linear dep.

Errors due to keeping the nearly linear
dep. functions grow like s1

-3, and we
need the difference between large
numbers:

Example application: Hartree-Fock theory

•Approximate solution to Schrödinger's equation

•Electron interact with average field of other electrons, giving rise to a
generalized eigenvalue problem

•Major steps (assuming spin restricted closed shell):

– Integral computation:

– Fock matrix formation:

– Diagonalization:

– Density computation:

H 
1

2
i

2

i

n

 
qa

ria


1

rij


qaqb

rabab

N


i j

n


a

N


i

n



Fpq  H pq  Prs vpqrs 
1

2
vprqs







Ppq  2 CpaCqa
a

N /2



FC  SCe CSCT  1

Spq   p (r)q (r)dr

Gpqrs   p (r1)q (r1)
1

r12

 r (r2) s (r2)dr1 dr2

H pq   p (r) 2 
qa

rAa

N








q (r)dr

Unteasing concurrency from applications
Form the atomic orbital Fock, F, and overlap, S
Synchronize so that F is complete on all nodes
Begin iterative eigensolver
For each set of independent shell pairs
Compute the rotation matrix
Synchronize so rotation matrix is complete
Rotate F and S
Synchronize so that F and S are complete

End loop over independent shell pairs
End eigensolver iterations

Traditional imperative formulation

Dataflow graph

Elementary operations

Simulated timings

Comparison of data dependencies
with and without synchronization

With synchronization:
Without synchronization:

Synchronization increases the number of data
dependencies. Thus, the overall potential for

parallelization is reduced by synchronizing
operations such as barriers and collectives.

Hierarchical decomposition needed for
locality and scalabilty

• Hierarchical in terms of operations

• Eigenvectors constructed from Fock matrix
constructed from integrals

• Hierarchical in terms of data

• Large blocks containing small blocks, etc.

• Map data hierarchy to memory hierarchy

• CCSD example:

Contract

Contract

Contract Contract

Contract Contract

Contract

Contract

t2(0,0,0,1)

SumSum Sum

Contract Contract

Sum

Contract

t2(0,0,1,0)

Sum Sum

ContractContract

Contract

Contract Contract

Contract Contr

Sum

Contract

f_vo(0,0)

Contract Contract Contract

t1(0,0)

Contract ContractContract Contract ContractContractContractContractContractContract

Contract Contrac

Contract

Contract

Contract Contract Contract ContractContract ContractContract Contract ContractContract Contract Contract Contract

Contract

Contract

Contract

Contract

f_vo(1,0)

Contract

t1(0,1)

Contract Contract Contract Contract

Contract

Contract ContractContract ContractContract ContractContract Contract

Contract

v_vvvv(0,0,0,1)

Sum

v_vvvv(0,1,0,1)

Sum

h_vv(0,1)

Sum

v_vvvv(0,0,1,0)

Sum

v_vvvv(0,1,1,0)

Sum

h_vv(1,0)

Sum

v_vvvv(1,0,0,1)

Sum

v_vvvv(1,1,0,1)

Sum

h_vv(1,1)

Sum

v_vvvv(1,0,1,0)

Sum

v_vvvv(1,1,1,0)

Sum

h_oo(0,0)

Sum

v_oooo(0,0,0,0)

Sum SumSum

v_oovv(0,0,0,0)

Sum

Contract Contract

Sum

Contract

Sum

ContractContract

v_oovv(0,0,0,1)

Contract

Sum

Sum

Sum

Sum

Contract

v_oovv(0,0,1,0)

Contract

Sum

Sum

Contract

v_oovv(0,0,1,1)

Sum

Sum

Sum

v_ooov(0,0,0,0)

Sum

Sum

v_ooov(0,0,0,1)

Sum

Sum

v_ovvv(0,0,0,1)

Sum

Sum

v_ovvv(0,0,1,1)

Sum

v_ovvv(0,1,0,0)

Sum Sum

v_ovvv(0,1,1,0)

Sum

r2(0,0,0,0)

r2_10(0,0,0,0)

k(0,0,0,0)

T(0,0,0,0) T(0,0,1,0)

t1t1(0,0,1,0)

Sum

k(0,1,0,0)

k_2(0,1,0,0)3(0,1,0,0) k_4(0,1,0,0)

Sum Contract

r2_2(0,0,0,0)

a(0,0,0,0)

a_3a_4(0,0,0,0)

tau(0,0,0,0)

ContractContract

tau(0,0,0,1)

t1t1(0,0,0,1)

Contract

tau(0,0,1,0)

Contract

tau(0,0,1,1)

Contract

b_2(1,1,0,0)

r2_4(0,0,0,0)

g_vv(1,0)

g_vv_2(1,0) g_vv_3(1,0)

vv_vvvo(1,0,0,0) vv_vvvo(1,1,0,0)

r2_5(0,0,0,0)

g_oo(0,0)

g_oo_2(0,0)

g_oo_3(0,0)

vv_ovoo(0,0

r2_7(0,0,0,0)

vvt_oovo(0,0,0,0)

vt_oovo(0,0,0,0)

Contract

r2_8(0,0,0,0)

jk(0,0,0,0)

j(0,0,0,0)

j_4(0,0,0,0) j_5(0,0,0,0)

vv_vvoo(0,0,0,0) vv_vvoo(0,1,0,0)

Contract

jk(0,1,0,0)

j(0,1,0,0)

j_2(0,1,0,0)

j_3(0,1,0,0) j_4(0,1,0,0) j_5(0,1,0,0)

vv_vvoo(1,0,0,0) vv_vvoo(1,1,0,0)

t2t2(0,0,0,0)

Contract

t2t2(0,0,1,0)r2_9(0,0,0,0)

r2(0,0,0,1)

r2_10(0,0,0,1)

k(0,0,0,1)

k_4(0,0,0,1)

T(0,0,0,1) T(0,0,1,1)

Sum

k(0,1,0,1)

Sum

r2_2(0,0,0,1)

r2_3(0,0,0,1)

b(0,0,0,1)

b_2(0,0,0,1)b_3(0,0,0,1)

b(0,1,0,1)

b_2(0,1,0,1) b_3(0,1,0,1)

b(1,0,0,1)

b_2(1,0,0,1)b_3(1,0,0,1)

b(1,1,0,1)

b_2(1,1,0,1)b_3(1,1,0,1)

r2_4(0,0,0,1) r2_5(0,0,0,1)

r2_6(0,0,0,1)

vt_ovvv(0,0,0,1)

r2_7(0,0,0,1)

r2_8(0,0,0,1)

t2t2(0,0,0,1)

Contract

t2t2(0,0,1,1)r2_9(0,0,0,1)

r2(0,0,1,0)

r2_10(0,0,1,0)

r2_2(0,0,1,0)r2_3(0,0,1,0)

b(0,0,1,0)

,0,1,0) b_3(0,0,1,0)

b(0,1,1,0)

b_2(0,1,1,0) b_3(0,1,1,0)

b(1,0,1,0)

b_2(1,0,1,0)b_3(1,0,1,0)

b(1,1,1,0)

b_2(1,1,1,0) b_3(1,1,1,0)

r2_4(0,0,1,0)

g_vv(0,1)

g_vv_3(0,1)

vv_vvvo(0,0,1,0) vv_vvvo(0,1,1,0)

g_vv(1,1)

g_vv_2(1,1)

g_vv_3(1,1)

r2_5(0,0,1,0)

r2_6(0,0,1,0)

vt_ovvv(0,1,1,0)

r2_7(0,0,1,0)

vvt_oovo(0,0,1,0)

vt_oovo(0,0,1,0)

r2_8(0,0,1,0)

jk(0,0,1,0)

j(0,0,1,0)

j_2(0,0,1,0)

j_3(0,0,1,0)

j_4(0,0,1,0) j_5(0,0,1,0)

jk(0,1,1,0)

j(0,1,1,0)

j_4(0,1,1,0)j_5(0,1,1,0)

r2_9(0,0,1,0)

r2(0,0,1,1)

r2_10(0,0,1,1)r2_2(0,0,1,1)

r2_4(0,0,1,1)

r2_5(0,0,1,1)

r2_7(0,0,1,1)

r2_8(0,0,1,1)

r2_9(0,0,1

Expand in terms of tensor subblocks

Be careful for what you ask …

Am I asking for a monolithic runtime system?

• No – this is the problem with MPI. Need a lightweight, portable, and low-level
interface for fast messaging. Includes active messages and fault notification
primitives.

• Varying levels of sophistication can be built upon this low-lying interface.

Am I asking for new languages?

• Yes and no – general purpose languages spoken and developed by a wide
community will always play a role. Libraries, DSLs (to generate the underlying
code), and embedded DSLs (to supplement the underlying language) will be
essential to hide machine complexity.

Introduction of DSL
for two electron integrals

(code too difficult for
compilers of the era was
subsequently removed)

Introduction of DSL
for many-body terms

Software isn’t everything …

Drive hardware design in tandem with software: co-design

Simulation permits
study of future HPC systems

Structural Simulation Toolkit (SST) – create a multi-scale computer
architecture for design and procurement of large-scale parallel
machines as well as in the design of algorithms for these machines.

May 11-13, 2011 Curtis Janssen – CIS 11

Functionality, validation, and quality are
key to SST/macro

Functionality: Permit co-design

• Correctly identify causal relationships
• Network topology
• Node configuration
• Noise/imbalance
• Bandwidth
• Latency
• Resource contention

• Play “what if” games
• Implementation effects for

communication routines
• Infinite performance in some

components to stress others.

• Test changes to application,
middleware, or resource management
• Reordering code blocks, scheduling

effects, etc.

• Test novel programming models
• Fault-tolerant or fault-oblivious

execution models
• Alternatives to MPI, parallel runtime

designs
• Mixed programming models

Validation

Software Quality Assurance

• Issue tracking / DVCS
• Continuous integration
• Automatic generation of
• documentation and
• distribution artifacts
• Software Development Plan
• Coordination with Sandia Software Quality

Implementation Group (SQIG) on lab-wide
Software Quality efforts

May 11-13, 2011 Curtis Janssen – CIS 12

Applications
• Functionality present
• Reproduce performance

Micro-benchmarks
• Parameterize simulator
• Explore pathological cases

UQ
• Understand

limitations

3.60

3.65

3.70

3.75

3.80

3.85

3.90

3.95

 1 10 100

T
im

e
(s

)

Processors per node

Gamma(degree 8, radius 5, w/o EC)
Fat-tree(degree 24, w/EC)
Torus (8x8x8, w/o EC)
Full (w/EC)
Full (w/o EC)

Multiple instruments
are needed for co-design

May 11-13, 2011 Curtis Janssen – CIS 13

Co-design Instrument SST/macro role

Applications • Use SST’s DUMPI to collect
traces. Use SST/macro to
simulate performance on
different architectures and
validate simulator.

• Use to guide development of
skeleton app, whether
manually or automatically.

Compact Apps: small program
capturing some aspect of full app.
Generates a result.

Mini Apps: small program capturing
simplified aspect of full app. Perhaps no
meaningful result.

Skeleton Apps: captures control flow
and communication pattern of app.
Runs in simulator.

• SST/macro simulations for
machines and algorithms not
yet available.

Kernels: Capture node-level aspects of
an algorithm.

• Generate parameterizations
for coarse-grained models.

Programming model
exploration: MPI application

S
e
tu

p

C
o
m

p
u
te

Skeleton Code Fragment

for (int i=0; i<nblocks-1; i++) {
std::vector<sstmac::mpiapi::mpirequest_t> reqs;
// Begin non-blocking left shift of A blocks
sstmac::mpiapi::mpirequest_t req;
mpi()->isend(blocksize, datatype, myleft,

tag, world, req);
reqs.push_back(req);
mpi()->irecv(blocksize, datatype, myright,

tag, world, req);
reqs.push_back(req);
// Likewise for B shifting down ...
// Simulate computation with current blocks
compute_api()->compute(instructions);
mpi()->waitall(reqs, statuses);}

// Finish last block
compute_api()->compute(instructions);

Systolic Matrix Multiplication Algorithm

• The implicitly synchronous systolic algorithm cannot recover from node
degradation

May 11-13, 2011 Curtis Janssen – CIS 14

C. L. Janssen, H. Adalsteinsson, J. P. Kenny, Using simulation to design
extreme-scale applications and architectures: programming model
exploration, ACM SIGMETRICS Performance Evaluation Review, 38, pp.
4-8, 2011.

http://dx.doi.org/10.1145/1964218.1964220

Programming model
exploration: actor model app.

Actor Model Matrix Multiplication Algorithm
Skeleton Code Fragments

// actormatmul run loop body
simplembox::recvresult_t reply =
mbox()->recv(actorid::any(),

actorpattern::any());
actorid id = reply.first;
shared_ptr<base> msg
= dynamic_pointer_cast<base>(reply.second);
msg->handle(id, self_.lock());

// actormatmul::compute run loop body
simplembox::recvresult_t res =
mbox()->recv(actorid::any(),actorpattern::any());
boost::shared_ptr<work> msg
= boost::dynamic_pointer_cast<work>(res.second);
compute(msg);
mbox()->send(msg->store_to(),

store::construct(msg->iteration()),
msg->matdim()*msg->matdim());

• Simulation permits straightforward investigation of alternative programming models
• Work-stealing approaches will play a role in dealing with large-scale machines lacking perfect homogeneity

May 11-13, 2011 Curtis Janssen – CIS 15

Summary

• Supercomputers in 10 years’ time will provide fundamental challenges
to both software and hardware designers

• Software and hardware must evolve together, in a co-design process,
to meet this challenges

• Specialized tools, such as application surrogates and architecture
simulators, are needed to implement this process

• More information:

http://sst.sandia.gov

cljanss@sandia.gov

Supplemental Slides

Elementary operations for Hartree-Fock
in terms of data dependencies

Two electron integrals formation, G:
Output: (ij|kl) for a shell quartet

Fock matrix formation, F:
Input: Two electron integrals

and density matrix
Output: Fock matrix elements

for a shell pair

Jacobi transform formation, J:
Input: Fock and overlap matrix elements
Output: Rotation matrix diagonalizing the sub-block

Matrix transformation, R:
Input: Fock or overlap matrix elements and Jacobi

transform
Output: Transformed matrix elements
Note: output has a sequence number that ensures rotations
are done in the correct order. Both J and R must be aware
of sequence number

Hartree-Fock data dependencies

• Computes the diagonal
blocks of the Fock matrix
after a single Jacobi sweep
for a three shell system.

• Certain input data has been
omitted to simplify the graph.

• Operations on the same row
(ovals) can be computed in
parallel

• Some parallelism can be
exploited among operation on
different rows

Simulated timings for 16 shells on 8
processors

