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Motivation: complexity of parallel machines is 
accelerating, but tools to manage this are not

•Several complexity issues affect apps:

– Extreme parallelism

– More computation power enables more 
complex/higher fidelity simulations

– More complex software

– Numerical issues

– Dropping mean time between failure

– Energy enters optimization objective function

• Human effort does not scale easily to such a complex environment

– Can another approach to programming solve some of these problems?

• Outline of current work:

– Hartree-Fock theory selected due to its expense and scaling issues

• Basis for many other electronic structure methods

– Examine traditional implementation of Hartree-Fock theory

– Show preliminary results of applying an alternative programming approach to 
Hartree-Fock and compare this to traditional implementations.

Improvements to chip performance over the years



Illustration of numerical issues using
Hartree-Fock theory as an example

Large systems are ill-conditioned: 
smallest overlap eigenvalue for 
linear alkane rapidly decrease as 
system grows for diffuse basis sets

Eliminating near linear dependencies 
can change energies—even in the 
limit of an exact linear dep.

Errors due to keeping the nearly linear 
dep. functions grow like s1

-3, and we 
need the difference between large 
numbers:



Example application: Hartree-Fock theory

•Approximate solution to Schrödinger's equation

•Electron interact with average field of other electrons, giving rise to a 
generalized eigenvalue problem

•Major steps (assuming spin restricted closed shell):

– Integral computation:

– Fock matrix formation:

– Diagonalization:

– Density computation:
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Unteasing concurrency from applications
Form the atomic orbital Fock, F, and overlap, S
Synchronize so that F is complete on all nodes
Begin iterative eigensolver
For each set of independent shell pairs
Compute the rotation matrix
Synchronize so rotation matrix is complete
Rotate F and S
Synchronize so that F and S are complete

End loop over independent shell pairs
End eigensolver iterations

Traditional imperative formulation

Dataflow graph

Elementary operations

Simulated timings



Comparison of data dependencies
with and without synchronization

With synchronization:
Without synchronization:

Synchronization increases the number of data 
dependencies. Thus, the overall potential for 

parallelization is reduced by synchronizing 
operations such as barriers and collectives.



Hierarchical decomposition needed for
locality and scalabilty

• Hierarchical in terms of operations

• Eigenvectors constructed from Fock matrix 
constructed from integrals

• Hierarchical in terms of data

• Large blocks containing small blocks, etc.

• Map data hierarchy to memory hierarchy

• CCSD example:
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Be careful for what you ask …

Am I asking for a monolithic runtime system?

• No – this is the problem with MPI. Need a lightweight, portable, and low-level 
interface for fast messaging. Includes active messages and fault notification 
primitives.

• Varying levels of sophistication can be built upon this low-lying interface.

Am I asking for new languages?

• Yes and no – general purpose languages spoken and developed by a wide 
community will always play a role. Libraries, DSLs (to generate the underlying 
code), and embedded DSLs (to supplement the underlying language) will be 
essential to hide machine complexity.

Introduction of DSL
for two electron integrals

(code too difficult for
compilers of the era was
subsequently removed)

Introduction of DSL
for many-body terms



Software isn’t everything …

Drive hardware design in tandem with software: co-design



Simulation permits
study of future HPC systems

Structural Simulation Toolkit (SST) – create a multi-scale computer 
architecture for design and procurement of large-scale parallel 
machines as well as in the design of algorithms for these machines.

May 11-13, 2011 Curtis Janssen – CIS 11



Functionality, validation, and quality are 
key to SST/macro

Functionality: Permit co-design

• Correctly identify causal relationships
• Network topology
• Node configuration
• Noise/imbalance
• Bandwidth
• Latency
• Resource contention

• Play “what if” games
• Implementation effects for 

communication routines
• Infinite performance in some 

components to stress others.

• Test changes to application, 
middleware, or resource management
• Reordering code blocks, scheduling 

effects, etc.

• Test novel programming models
• Fault-tolerant or fault-oblivious 

execution models
• Alternatives to MPI, parallel runtime 

designs
• Mixed programming models

Validation

Software Quality Assurance

• Issue tracking / DVCS
• Continuous integration
• Automatic generation of
• documentation and
• distribution artifacts
• Software Development Plan
• Coordination with Sandia Software Quality 

Implementation Group (SQIG) on lab-wide 
Software Quality efforts

May 11-13, 2011 Curtis Janssen – CIS 12

Applications
• Functionality present
• Reproduce performance

Micro-benchmarks
• Parameterize simulator
• Explore pathological cases

UQ
• Understand 

limitations
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Multiple instruments
are needed for co-design

May 11-13, 2011 Curtis Janssen – CIS 13

Co-design Instrument SST/macro role

Applications • Use SST’s DUMPI to collect 
traces. Use SST/macro to 
simulate performance on 
different architectures and 
validate simulator.

• Use to guide development of 
skeleton app, whether 
manually or automatically.

Compact Apps: small program 
capturing some aspect of full app. 
Generates a result.

Mini Apps: small program capturing 
simplified aspect of full app. Perhaps no 
meaningful result.

Skeleton Apps: captures control flow 
and communication pattern of app. 
Runs in simulator.

• SST/macro simulations for 
machines and algorithms not 
yet available.

Kernels: Capture node-level aspects of 
an algorithm.

• Generate parameterizations 
for coarse-grained models.



Programming model
exploration: MPI application
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Skeleton Code Fragment

for (int i=0; i<nblocks-1; i++) {
std::vector<sstmac::mpiapi::mpirequest_t> reqs;
// Begin non-blocking left shift of A blocks
sstmac::mpiapi::mpirequest_t req;
mpi()->isend(blocksize, datatype, myleft,

tag, world, req);
reqs.push_back(req);
mpi()->irecv(blocksize, datatype, myright,

tag, world, req);
reqs.push_back(req);
// Likewise for B shifting down ...
// Simulate computation with current blocks
compute_api()->compute(instructions);
mpi()->waitall(reqs, statuses);}

// Finish last block
compute_api()->compute(instructions);

Systolic Matrix Multiplication Algorithm

• The implicitly synchronous systolic algorithm cannot recover from node 
degradation

May 11-13, 2011 Curtis Janssen – CIS 14

C. L. Janssen, H. Adalsteinsson, J. P. Kenny, Using simulation to design 
extreme-scale applications and architectures: programming model 
exploration, ACM SIGMETRICS Performance Evaluation Review, 38, pp. 
4-8, 2011.

http://dx.doi.org/10.1145/1964218.1964220


Programming model
exploration: actor model app.

Actor Model Matrix Multiplication Algorithm
Skeleton Code Fragments

// actormatmul run loop body
simplembox::recvresult_t reply =
mbox()->recv(actorid::any(),

actorpattern::any());
actorid id = reply.first;
shared_ptr<base> msg
= dynamic_pointer_cast<base>(reply.second);
msg->handle(id, self_.lock());

// actormatmul::compute run loop body
simplembox::recvresult_t res =
mbox()->recv(actorid::any(),actorpattern::any());
boost::shared_ptr<work> msg
= boost::dynamic_pointer_cast<work>(res.second);
compute(msg);
mbox()->send(msg->store_to(),

store::construct(msg->iteration()),
msg->matdim()*msg->matdim());

• Simulation permits straightforward investigation of alternative programming models
• Work-stealing approaches will play a role in dealing with large-scale machines lacking perfect homogeneity

May 11-13, 2011 Curtis Janssen – CIS 15



Summary

• Supercomputers in 10 years’ time will provide fundamental challenges 
to both software and hardware designers

• Software and hardware must evolve together, in a co-design process, 
to meet this challenges

• Specialized tools, such as application surrogates and architecture 
simulators, are needed to implement this process

• More information:

http://sst.sandia.gov

cljanss@sandia.gov
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Elementary operations for Hartree-Fock
in terms of data dependencies

Two electron integrals formation, G:
Output: (ij|kl) for a shell quartet

Fock matrix formation, F:
Input: Two electron integrals

and density matrix
Output: Fock matrix elements

for a shell pair

Jacobi transform formation, J:
Input: Fock and overlap matrix elements
Output: Rotation matrix diagonalizing the sub-block

Matrix transformation, R:
Input: Fock or overlap matrix elements and Jacobi

transform
Output: Transformed matrix elements
Note: output has a sequence number that ensures rotations
are done in the correct order. Both J and R must be aware
of sequence number



Hartree-Fock data dependencies

• Computes the diagonal 
blocks of the Fock matrix 
after a single Jacobi sweep 
for a three shell system.

• Certain input data has been 
omitted to simplify the graph.

• Operations on the same row 
(ovals) can be computed in 
parallel

• Some parallelism can be 
exploited among operation on 
different rows



Simulated timings for 16 shells on 8 
processors


