

# A scaling rule for the collision energy dependence of a rotationally inelastic differential cross-section: a case study of $NO(X) + He$

Xia Zhang<sup>1</sup>, Chris J. Eyles<sup>2</sup>, Craig A. Taatjes<sup>3</sup>, Dajun Ding<sup>1</sup> and Steven Stolte<sup>1,4,5</sup>

<sup>1</sup>Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, China

<sup>2</sup>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany

<sup>3</sup>Combustion Research Facility, Mail Stop 9055, Sandia National Labs, Livermore, Ca 94551

<sup>4</sup>Laser centre and Phys. Chem., Faculty of Exact Science, Vrije Universiteit, Amsterdam, 1081HV, The Netherlands

<sup>5</sup>Laboratoire Francis Perrin, Bâtiment 522, DRECEM/SPAM/CEA Saclay, 91191 Gif sur Yvette, France



## Method:

**Exact Quantum Treatment (QM):** Solve large sets ( $>1000$ ) of coupled differential equations that contain all the relevant scattering channels  $j, l, \Omega, \varepsilon$  to result the T matrix  $T_{j',l',\Omega',\varepsilon',j,l,\Omega,\varepsilon}^J$  scattering process at each  $J$  and parity. In our case one has to do this for  $J=0.5$  up to  $J=120.5$ . This all requires a state of the art computational effort!

**Quasi-Quantum Treatment (QQT):** employs a Feynman path alike integral over the angular variables in the kinematic apse frame. *QQT* assigns a phase factor to each scattering (ray) trajectory according its path length and its De Broglie wavelength. As a result the *QQT* provides a valuable physical insight while requiring very little computational effort<sup>[1,2]</sup>. The *QQT* scattering amplitude follows from:  $g(\beta, p; j', m'_a \leftarrow j=0, m_a) = C(\beta) \langle j', m'_a | g_{geom}(\gamma_a; \beta) \cdot \exp[i\eta_{j' \leftarrow j}(\gamma_a; \beta)] | j=0, m_a \rangle$  (1)

where the phase shift is:  $\eta_{j' \leftarrow j}(\gamma_a; \beta, p) = -\mathbf{a}(\beta, p) \cdot \mathbf{R}_S(\gamma_a) = -[k_{\perp} - (-1)^p k'_{\perp}] \cdot \mathbf{R}_S(\gamma_R) \cdot \cos(\gamma_R - \gamma_a)$  (2)

and the geometric scattering amplitude is:  $g_{geom}(\gamma_a; \beta) \equiv k \sqrt{\frac{d\sigma_{geom}(\gamma_a; \beta)}{d\omega_a}} = k \sqrt{\cos \beta} |\rho_1(\gamma_a) \cdot \rho_2(\gamma_a)|$  (3)

An important difference between the *QM* and *QQT* treatment is that the former is addressed in the collision frame, the state-to-state DCS is described by the spherical angles  $\theta$ , while the latter is addressed in the kinematic apse frame, where the DCS is given by the spherical angles  $\beta$ .

## Extension of *QQT* into the classically forbidden region:

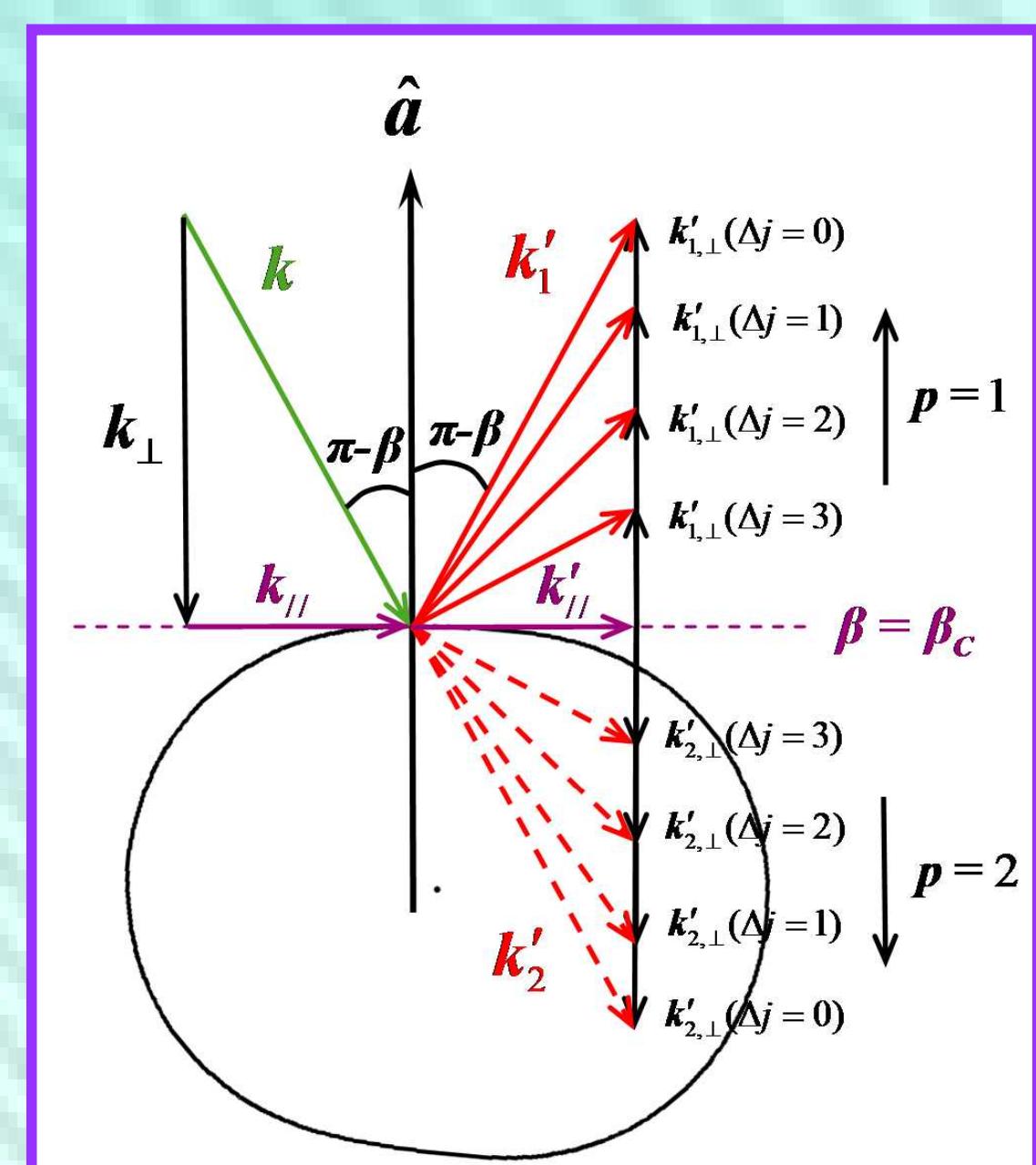


Fig. 1. Representation of the classically allowed (solid lines) and classically forbidden (dashed lines) Feynman paths that contribute to the scattering amplitude within the *QQT* formalisms.

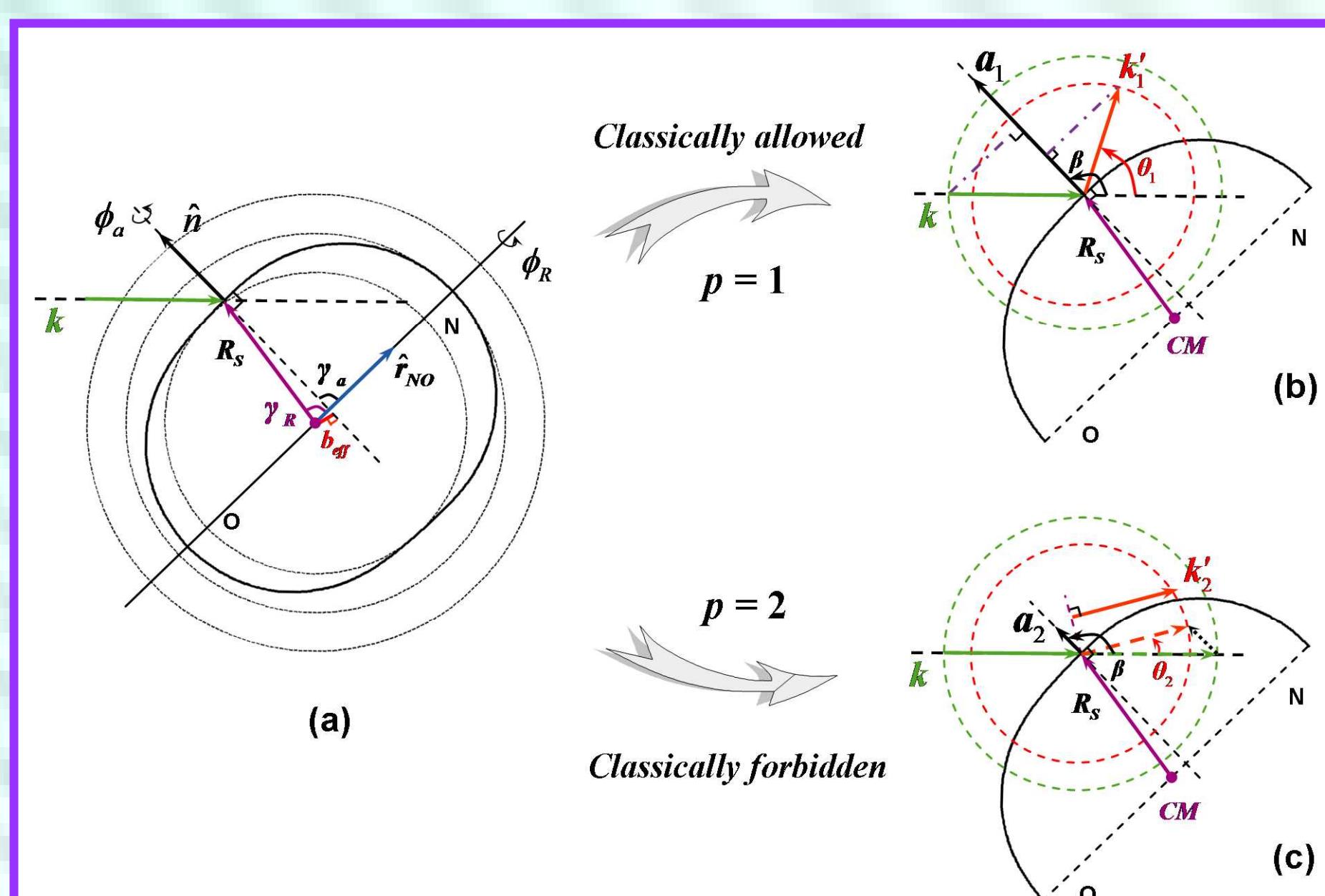


Fig. 2 Representation of the angles defining the *QQT* collision geometry (left hand panel), and the classically allowed (upper right hand panel) and classically forbidden (lower right hand panel) Feynman paths that contribute to the scattering amplitude within the *QQT* formalism.

## Scaling process:

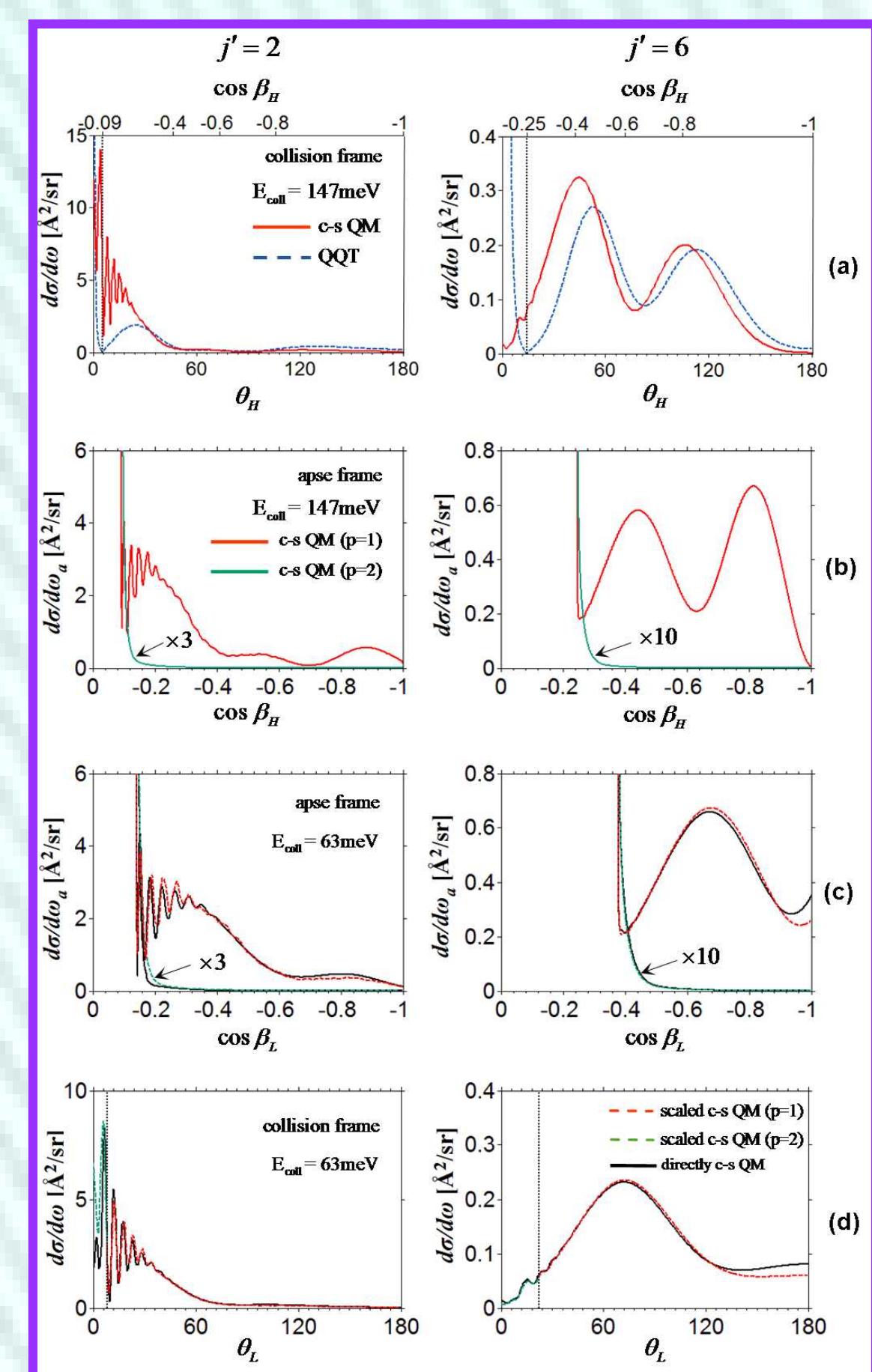


Fig. 3. Illustration of the step-by-step process used to scale the closed-shell QM DCSs from a high collision energy  $E_H$  to a lower collision energy  $E_L$ . The scattering of  $NO(X) + He$  from  $j=0$  to  $j'=2$  and to  $j'=6$  are considered as examples here.

The relation between the scattering angle  $\theta$  and apse angle  $\beta$  is:

$$\cos \beta = \hat{a} \cdot \hat{Z} = \frac{k' \cos \theta - k}{\sqrt{k'^2 - 2kk' \cos \theta + k^2}} \quad (4)$$

$$\theta = \arccos \left[ \left( \frac{k}{k'} \right) \sin^2 \beta + (-1)^p |\cos \beta| \left( 1 - \left( \frac{k}{k'} \right)^2 [\sin^2 \beta] \right)^{0.5} \right] \quad (5)$$

$$\text{the cutoff angle is: } -1 \leq \cos \beta \leq \cos \beta_c = -\sqrt{1 - (k'/k)^2} \quad (6)$$

The relation between the apse and collision frame is:

$$\frac{d\sigma_{f \leftarrow i}}{d\omega}(\theta, \phi) = \frac{d\sigma_{f \leftarrow i}}{d\omega_a}(\beta, \alpha) \cdot \left| \frac{d\cos \beta(\theta)}{d\cos \theta} \right| \quad (7)$$

$$\text{where: } \frac{d\cos \beta}{d\cos \theta} = \frac{(k')^2 \cdot [k' - k \cos \theta]}{\{(k')^2 - 2kk' \cos \theta + k^2\}^{1.5}} \quad (8)$$

The phase shift, geometry scattering amplitude and the differential cross section calculated at collision energy of  $E_H$  and  $E_L$  relates to each other by:

$$g_{geom}^L(\gamma_a; \cos \beta_L) = \sqrt{\frac{k_L}{k_H}} g_{geom}^H(\gamma_a; \cos \beta_H = \frac{k_L}{k_H} \cdot \cos \beta_L) \quad (9)$$

$$\eta_{f \leftarrow i}^L(\gamma_a; \cos \beta_L, p) = \eta_{f \leftarrow i}^H(\gamma_a; \cos \beta_H = \frac{k_L}{k_H} \cdot \cos \beta_L, p) \quad (10)$$

$$\frac{d\sigma_{f \leftarrow i}^{QQT;L}(\cos \beta_L)}{d\omega_a} = \frac{k_H}{k_L} \frac{d\sigma_{f \leftarrow i}^{QQT;H}(\cos \beta_H = \frac{k_L}{k_H} \cos \beta_L)}{d\omega_a} \quad (11)$$

## Results:

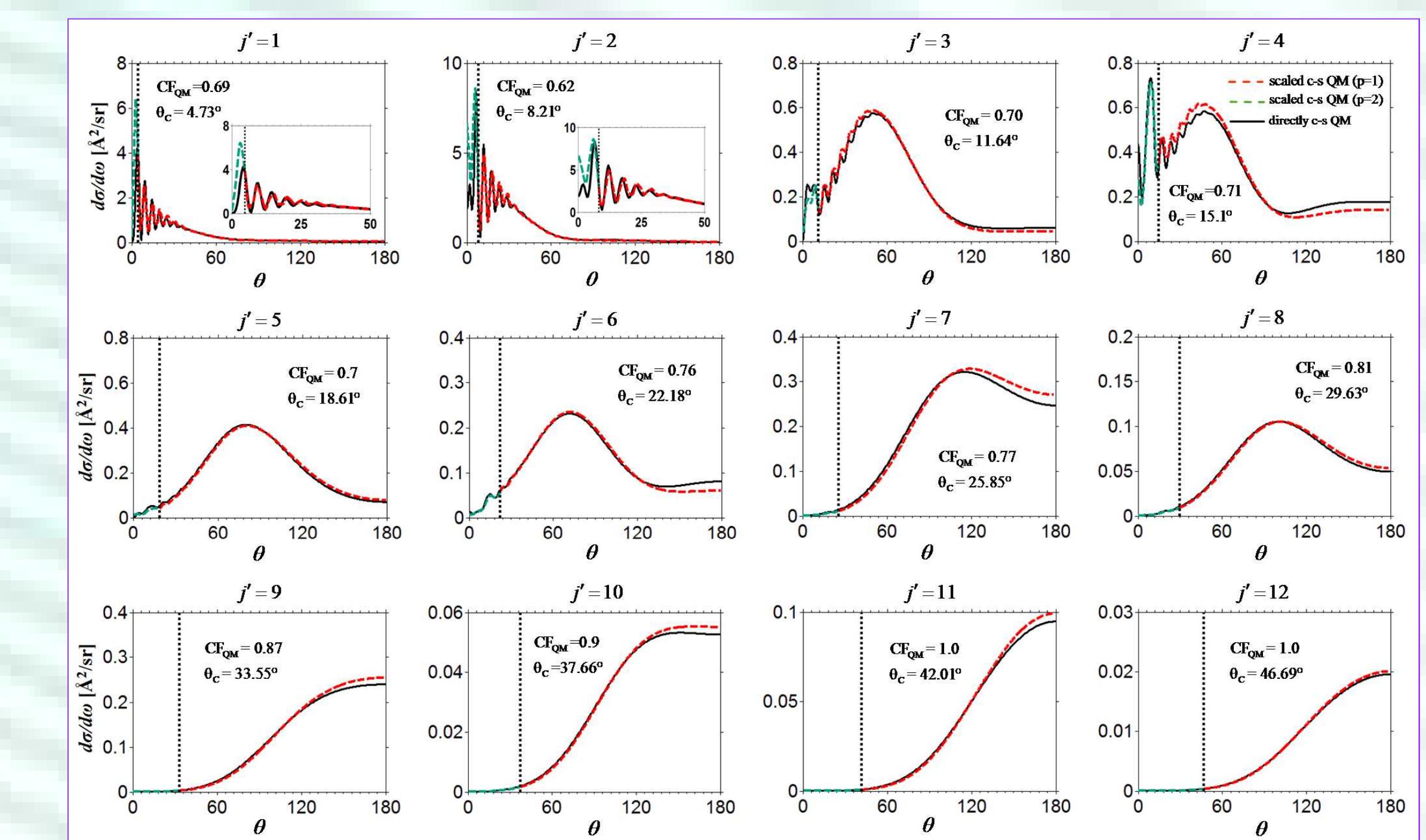


Fig. 4. Complete set of results for the comparison of the *closed-shell* QM  $NO(X) + He$  DCSs from initial state  $j=0$  to final states  $j'=1-12$  scaled from a collision energy of 147meV to 63meV (dashed lines) with those DCSs calculated directly at 63meV (solid lines). Insets in the first two panels show a detailed comparison at low scattering angles. The point at which each transition becomes classically forbidden is shown as a dashed vertical line.

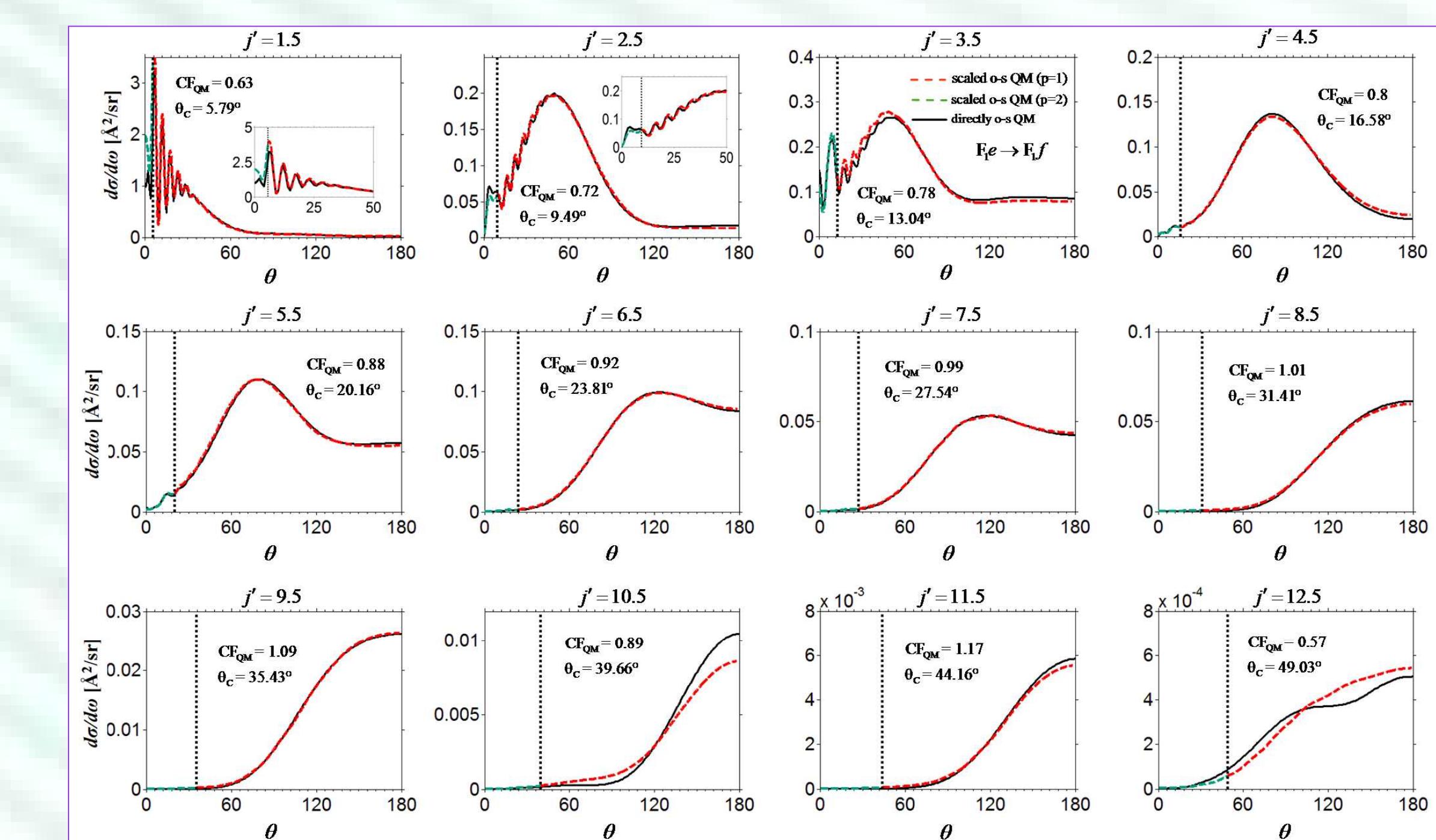


Fig. 5. Complete set of results for the comparison of the *open-shell* spin-orbit conserving QM  $NO(X) + He$  DCSs from initial state  $j=0.5$ ,  $e$  to final states  $j'=1.5-12.5$ ,  $f$  scaled from a collision energy of 147meV to 63meV (solid lines) with those DCSs calculated directly at 63meV (dashed lines). Insets in the first two panels show a detailed comparison at low scattering angles.

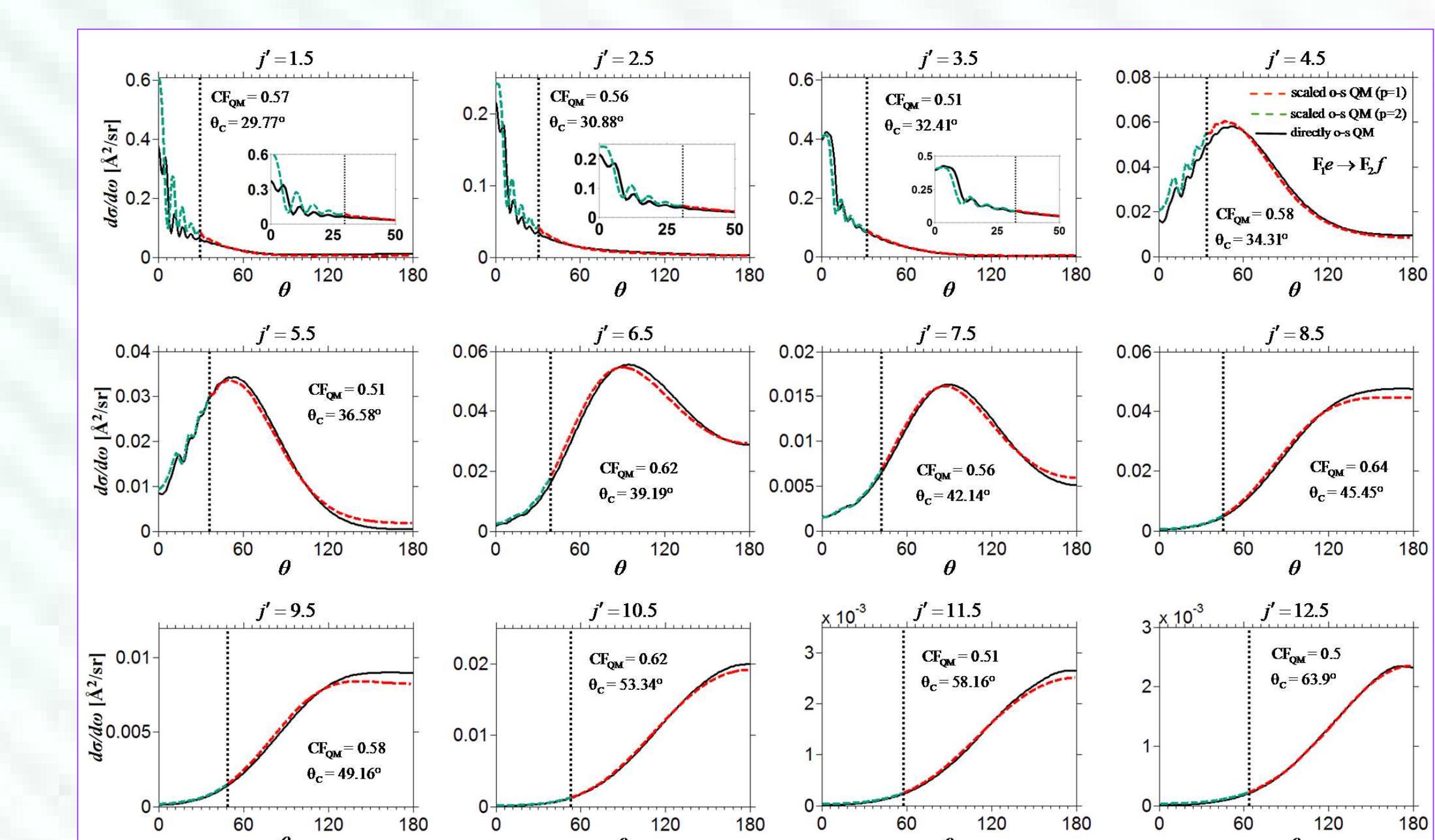


Fig. 6. same as fig.5 but for the *open-shell* spin-orbit changing QM  $NO(X) + He$  DCSs transition from  $e \rightarrow f$

## References:

- [1] A. Gijsbertsen, H. Linnartz, C.A. Taatjes, S. Stolte, *J. Am. Chem. Soc.* 128(2005)72.
- [2] A. Ballast, A. Gijsbertsen, S. Stolte, *Mol. Phys.* 106(2008)315.
- [3] J. Kłos, G. Chalasinsky, M.T. Berry, R. Bukowski, S.M. Cylbulski, *J. Chem. Phys.* 112(2000)2195.