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Motivation for polymer shock simulation

Z-machine at Sandia National Labs Z-machine experiments allow:
* Extremely high-pressure shock studies
* Inertially confined fusion (ICF) research

® Better understand EOS for polymers and
mixtures

A-K gap

Double-ended Z pinch with foam-shell capsule
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Hierarchy of modeling approaches

Shock response in hydrocarbon foams depend on

Continuum scale
processes and structure at several length scales:

Ms times & nm-mm lengths

Molecular scale
ns tlmes & 10s nm Iengths

Quantum scale
fs times & A lengths

Matthew Lane -
ilane@sandia.gov

Sandia
National
Laboratories



Hierarchy of modeling approaches

® VASP 5.1 code (Georg Kresse, Vienna, Austria)

° Plane-wave basis allows controlled convergence & free electrons/ionization

* Finite-temperature DFT with Projector augmented wave core functions (PAW)
* Sandia developed AMOS5 functional (Armiento & Mattsson, Phys Rev B 2005)

* Cochrane, et al., Shock Compression in Condensed Matter Proceedings. (2011)

* LAMMPS code (Steve Plimpton, et al., Sandia National Labs)

° MD engine for atoms, molecules, or particles at any length/time scale
* Multiple common interatomic potentials allows for comparison

* Integrated MPI for massively parallel simulations

° http://lammps.sandia.gov

° Lane, et al., Shock Compression in Condensed Matter Proceedings. (2011)

* ALEGRA code (Sandia National Labs)

* MHD engine for 3D modeling of continuum systems
* Mesoscale response with multiple physics models

° http://www.cs.sandia.gov/ALEGRA

* Haill, et al., Shock Compression in Condensed Matter Proceedingsi(2.01 ondia
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http://lammps.sandia.gov
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Dense polymer simulation

T.R. Mattsson, et al., Phys Rev B,
81, 054103 (2010).
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Polyethylene - simplest possible linear carbon backbone
structure forms semi-crystalline solids

PMP (TPX) - branched hydrocarbon with bulky side chains
which is good for producing amorphous foams

Molecular Dynamics

OPLS, Jorgensen et al., JACS, 118, 11225 (1996)
Borodin-Smith exp-6, JPCB, 110, 6279 (2006)
AIREBO, Stuart et al., JCP, 112, 6472 (2000)
ReaxFF, vanDuin et al., JPCA, 112, 1040 (2008)

® 22,000+ atom PE sample and 45,000+ atom PMP
* Uniaxial Hugoniotstat method used to compress

Density Functional Theory

AMO5 Functional

* Several hundred atom samples of PE
and PMP
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Polyethylene shock Hugoniot
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* AIREBO and OPLS both give significantly too stiff shock response at all pressures
* Borodin-Smith and ReaxFF better choices for weak shocks in polyethylene

® Only the DFT-AMOS5 simulation of high fidelity also for strong shocks

* Significant deviations already well before the regime where dissociation occurs

® Reactive properties of force-fields are not important for weak shocks L
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Core repulsion model is critical

1 . . . ° AIREBO and OPLS share L-J 12-6
functional form for core interaction
0751 ® Borodin-Smith exp-6 has a weaker
exponential form, more physical
A shock behavior
= 0.5F
2 ® Potentials parameterized near
5 ambient conditions where core
L . . .
0.25 interactions are small, unlike in high-
density shock conditions
0- * Behavior under shocks are difficult to
] ' 5 ' 3 ' y predict from equilibrium properties
r(A)
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Poly(4-methyl 1-pentene) shock Hugoniot
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* AIREBO and OPLS both give significantly too stiff shock response at all pressures
* Borodin-Smith and ReaxFF better choices for weak shocks in polyethylene

® Only the DFT-AMO5 simulation of high fidelity also for strong shocks

* Significant deviations already well before the regime where dissociation occurs

® Reactive properties of force-fields are not important for weak shocks Sanda
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Foam introduction

Densities
Experimental foam — 0.309 +/- 0.025 g/cc
Simulated foam — 0.300 g/cc

Experimental fabrication:
0.833 g/cc PMP dissolved in cyclohexane &
evaporated

Simulation fabrication:
0.833 g/cc PMP perforated with growing spherical
indenters placed on an fcc lattice, creating a unit cell
of foam with unit cell of 20x20x20 nm.

ReaxFF potential was used exclusively.

S. Root, et al., (to be submitted 2011).
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Foam shock methodology
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* Profiles were calculated from per-atom variables
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Foam results — Hugoniot data
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* Good quantitative agreement between Z experimental data, and both MD and
continuum simulations for ~ 0.310 g/cc foam shock loading

* Spread in experimental data comes from variation is sample density and
inhomogeneity.
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Temperature dense polymer vs foam
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Foam results — dissociation and vapor
10 km/s piston —0.300 g/cc PMP foam

2
[ ]

2 F 908 Dissociation and vaporization at
much lower flyer velocities.

o Accelerated free surface expansion
: S gives rise to void hot spots

Vaporization and surface blow out
broadens the shock profile

25 km/s piston — 0300 g/lcc‘PMP foam

In percolating voids vapor material
can behave qualitatively differently
than in closed voids.
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Summary and conclusions

® For dense polymers, shock response depends more on accurate potentials than on
structure. Thus, DFT is excellent in dense polymers

* MD potentials exist, such as ReaxFF, which capture the quantitative shock response of
both dense polymers and foams up to 50 GPa in dense polymers and higher in foams

* Good agreement found with experiment and continuum simulation for shock
compressed polymer foam. Much is left to explore in determining the role of
inhomogeneity, detailed structure and length scales on shock response

Future work and possible collaboration opportunities
* Nanoparticle-polymer composites

* Void scale, structure effects and void percolation
Acknowledgments

Gary Grest, Aidan Thompson, Thomas Haill, Seth Root, Kyle Cochrane,
Mike Desjarlais, Thomas Mattsson

Matthew Lane - 14 /
ilane@sandia.gov

Sandia
National
Laboratories



