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Shock Compression of Krypton

• Krypton is a model element 
to study high pressure effects 
on filled-shell electron 
configurations

DFT Results

• DFT Results consistent with 
experimental Hugoniot data < 1 Mbar

• SESAME 5181 and the DFT results agree 

Monte Carlo (MC) Impedance Matching

Aluminum

• Uncertainty in experimental data (Knudson 
et al., JAP 2003)

• Vary each U -U point by an uncorrelated 
• Liquid Kr Hugoniot 
experimentally 
determined to 100 Gpa

• Current EOS tables 
show good agreement 
below 100 Gpa

• EOS tables diverge 
above experimental data

• Use Density Functional Theory simulations to calculate the 
krypton Hugoniot

Objectives

• SESAME 5181 and the DFT results agree 
up to 4 Mbar

• Original VASP PAW trends stiffer

• At high T the PAW potential for core 
electrons is incorrect

• Core electrons can be excited out of the 
potential

• A modified PAW (with 18 valence 
electrons) developed for high T

• The 18e PAW agrees with the improved 
8e PAW results to 8 Mbar

• Vary each US-UP point by an uncorrelated 
random number with  = experimental  
uncertainty

• Solve for weighted linear fit parameters and 
generate a distribution of fits

• Determine mean, , and correlation matrix 
of the fit parameters

Krypton

• Vary measured parameters (VF, US, 0) with 
uncorrelated random numbers,  = experimental 
uncertaintykrypton Hugoniot

• Experimentally measure the liquid krypton Hugoniot

• Use the DFT and experimental results to validate an EOS 
model

Density Functional Theory 
• DFT-MD simulations performed using VASP 5.1.40*

• Electronic states occupied according to Mermin’s finite-
temperature formulation

8e PAW results to 8 Mbar

Need experimental data to validate the DFT 
simulations and EOS tables

Shorting Cap

Current flow (J)

Induced
B-field

Z-Experiment Setup
Monte Carlo technique accounts for experimental uncertainty and 
propagates error in the Al standard into the resulting Kr data.

uncertainty

• Vary Al fit parameters using correlated random 
numbers

• Calculate UP, P, and 

• Determine mean and 

Experimental Results
temperature formulation

• Projector augmented wave core functions (PAW) potential 
for core electrons – 8 valence electrons

• Calculate energy and pressure for a given density and 
finite temperature

• Solve the Hugoniot Condition:      02  vvPPEE refrefref

• Initial conditions: 0 = 2.41 g/cc, T0 = 118 K, 32 atoms

• LDA and AM05 exchange correlation functionals

• Convergence tested: number of atoms, energy cut off

• Methods demonstrated successfully on Xe, H2O, C, quartz 

Cathode Anode (Flyers)

AK Gap

• Current pulse loops through shorting 
cap inducing a B – field.

• Resulting J x B force accelerates 
anodes (flyers) outward up to 40 km/s

LN2 Cryostat Target Cryo-Cell
• Hugoniot determined to 8 Mbar

• Used reflected Al Hugoniot to 
calculate Kr state

• Using SESAME 3700 release shifts 
density lower ~ 1%

• Improved PAW and 18e PAW results 
agree with experimental data

• Original VASP PAW too stiff

• SESAME 5181 agrees to 4 Mbar

* G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993) and Phys. Rev. B 49, 14251 (1994). 

PAW Potential Improvement

arctan (logarithmic derivative)

l=s(red), p(blue),d(green,local),f(orange,local),4(pink,local)

Mismatch in p, d, and f 
scattering properties

Fermi-distribution shows relevant energy scale
• Scattering properties an issue 
first discovered in our work on 
Xe (Root et al., PRL 105, 085501 
(2010))

• Asymmetric AK Gaps result in two 
different flyer velocities (two Hugoniot 
points per experiment)

• Target filled to ~16.7 PSI high purity Kr gas

• Cooled to 118 K with LN2

Experimental Approach

VISAR

Al buffer Cu spacer

Liquid Kr

• SESAME 5181 agrees to 4 Mbar

• Phil Sterne (LNLL) developing Y360 using DFT and Z-Expt. Results

Summary

• Experimentally measured the liquid Kr Hugoniot to 8 Mbar

• Demonstrated the need for accurate PAW potentials at high temperatures
E (Ry)

E (Ry)

VASP Original PAW

• PAW core potential/function (color) 
should display same scattering 
properties as the full electron atom 
(gray)

• The original VASP 8e PAW is 
adequate for low T, but mismatch in 
logarithmic derivative as T (energy) 
increases

• The improved VASP 8e PAW has 
improved scattering properties at 
high energy and temperature

Improved to 5 Ry
Al Flyer

VISAR

Quartz flyer witness

Quartz top-hat

• Temperature = 118 K, Kr 0 = 2.426 g/cc, Sample size ~ 250 µm

• Typically 4 different VPFs on target – reduce uncertainty

• Demonstrated the need for accurate PAW potentials at high temperatures

• Validated DFT results to 8 Mbar

• Showed that SESAME 5181 is reasonable to 4 Mbar

• Sterne’s Y360 EOS reliably reproduces the Hugoniot to multi-Mbar pressures
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VASP Improved PAW
high energy and temperature

• Matches scattering properties to 5 
Ry (68 eV)

• Typically 4 different VPFs on target – reduce uncertainty

• Shock front in Kr is reflective – direct measurement of shock velocity

• Measure flyer velocity directly on the quartz flyer witness

• Starting from liquid provides a well-characterized, uniform initial state that is 
repeatable from experiment to experiment 
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