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Laser-collision induced fluorescence provides
measure of electron density and "temperature”

= Motivation: What is the density? What is the temperature? Where and When?
= More traditional probe techniques may couple and perturb
= Optically passive techniques are line-of-sight limited
= Optically active-techniques such as Thomson scattering pose their own set of challenges

= In this presentation
= Laser-collision induced fluorescence (LCIF) primer
Collisional-radiative model used to predict LCIF
- Applied to triplet manifold of Helium
= Implement and benchmark technique
Experimental setup
- Time evolution of LCIF and time integrated LCIF
= Applications of LCIF:
lon sheaths, transient double layers, positive columns
= Future directions and concluding comments
Extension of helium
Investigate argon

(1) Sandia National Laboratories



Part |: LCIF concepts and key trends

= Overview
- LCIF concepts
- Collisional-radiative model for helium
- Key scaling trends

LCIF Concept CR Model Key scaling trends
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LCIF i1s based on redistribution of excited
state by plasma electrons

= Laser excitation causes populates an intermediate state
- Relaxation processes deplete excited state

= Portion of excited state population gets redistributed into "uphill" states
= Driven by interaction with energetic plasma electrons
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LCIF looks for changes in emission of neighboring
states after laser excitation
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Redistribution after laser excitation is complex

= A "good" model is required to predict transfer between levels
= Employ a collisional-radiative model (CRM) to predict redistribution

"Electron mixing” "Photon mixing" "Neutral mixing”
dN . .
dt’ = ZK”N > KiN, }n + D AN > AN, +Z{ZK,MN > KN, N
| i#] i#] > i<] B i#] i

m Electron density and electron temperature appear in first term
= Temperature dependence introduced via K¢;

Electron-temperature dependent rates

Ki? = <O-ij (E)Ve>

Distribution function used for describing electron velocities
( yzmwx/
f (V) ~p kT

Approach is applicable to various atomic and

molecular systems of interest =
| “u Sandia National Laboratories
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Helium atom serves as target species for
LCIF measurements

= Employ Helium to start with - considering argon
= "Simple system" with "better known" rates

= Utilize functionalized form of cross-sections compiled by Ralchenko?
= Integrate to get rates, compare to measured rates 23
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1: Yu. Ralchenko, R. K. Janev, T. Kato, D. V. Fursa, |. Bray, F. J. De Heer, Atomic Data and Nuclear Data Tables 94, 603 (2008)

2: R. Denkelmann, S.Maurmann, T. Lokajczyk, P. Drepper, and H. —=J. Kunze, J. Phys. B: At. Mol. Opt. Phys. 32, 4635 (1999).
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CRM predicts evolution of various helium states

= Temporal evolution serves as a partial "fingerprint" of electron interaction
= Analyze shape of decay above n,~ 10! electrons/cm3

after laser excitation

- Below n~ 10!! absolute intensities are needed

33pP > 238

i?ne - Aij

Computed temporal evolution

== 105 x101 ~ 107

338 > 2%P

33D > 23P

(389 nm)

-------------------------------

IR TR, N DR SRR TR R
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Normalized LCIF

Time (ns)

(707 nm)

(588 nm)

43D -> 2°P

{447 nm)

Key transitions

4D

m— N.=1010e/cm?3
==== ny=10"e/cm?3
- = Ne=1012e/cm?

kT,=2eV

Need at least two time-resolved profiles to uniquely obtain n_, kT,
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Window of integration

Time integrated intensity trends are utilized
Instead of time resolved LCIF
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= Examine ratios of time integrated LCIF
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Small energy gap leads to "kT, independent”
coupling of 3P to 3°D

3P 43D

Cross-sections Rates
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Considerable fraction of the electrons are =
capable of driving the interaction Sandia National Laboratories

Yu. Ralchenko. R. K. Janev. T. Kato. D. V. Fursa. |. Brav. F. J. De Heer. Atomic Data and Nuclear Data Tables 94. 603 (2008)




Part Il: LCIF implementation and benchmark

= Implement and benchmark technique
- Experimental considerations
- Benchmarking LCIF - compare observations with anticipated trends

Experimental setup Benchmark LCIF

Delay generator

= oo

- ' H ‘ -
Plasma Red: CRM predictions (n, =5x101%, T,~ 4 eV)

Beam Time (ns)
E)(pander Blue: Measured LIF/LCIF
l [
Delay generator o
..
o

Gated ICCD

Camera
E 80 GHz
Gas out I l Gasin

.
! ® SetA
° ® SetB
® SetC
= = 20 mm diameter = CR predictions
* 200 mm length ‘ ‘ :
1010 1011 1012
Filtered 8 Ab 3
PMT Electron densities (e/cm®)
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Nomalized LCIF

588/389 ratio
o
P
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Experimental implementation of the LCIF is realized

Nanosecond pulsed laser used for excitation
- <10 ns FWHM, < 0.1 cm! line width
Timing of experiment controlled by delay generators
= Move experiment and imaging with respect to firing of the laser
Image LCIF with gated-intensified CCD
= Narrow (~ 1 nm FWHM) interference filters centered on lines of interest
Take two images per transition considered
= Total emission and plasma induced emission (PIE) - subtract the two

Optical setup Timing sequence
50 ms (20 Hz laser)

Delay generator

4 <10 ns FWHM Time
Expander
Delay generator PIE only

Gated ICCD
Camera

Need to make six (3 x 2) measurements to obtain n_, kT, () sandia National abrbrs
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Pulsed positive column is utilized to
benchmark LCIF technique

m Pulse discharge currents generate broad density range
- ~ 10 Microseconds, 80 GHz interferometer

m Compute drift velocities and extract electron temperatures
- Use published drift parameters

Positive column Helium drift parameters

80 GHz
Gas out I l Gas in

jmm diameter

200 mm length

A “ita “a

Filtered E’M’
PMT

‘l’ ‘l’_ o E’Lﬁsg + DC voltage
To digitizing oscilloscopes

Drift velocity (cm/s)

(Ad) sainjesodwal uo29|3

+ Ll il Wil
10? 1072 10" 1
E/N, Td

E/N (Td)
Positive column is a good vehicle to benchmark LCIF technique

@ Sandia National Laboratories
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First steps: Verify time resolved LCIF to test CRM

m First sets of measurements presented some surprises
- Strong radiative coupling between 33P and 33S states
m Proper accounting produced observed trends
- Measured data and predicted behavior are consistent

Key transitions Representative results

33P ->23S 33S ->23P 33D ->23%P 43D ->23P
sed M - -1 ()

>

L -

________________________

RSz EET —

N 0 50 100 150 200 250

Normalized LCIF

0 50 100 150 200 250 0 50 100 150 200 250

Time (ns) Red: CRM predictions (n, =5x101%, T.~ 4 eV)
Blue: Measured LIF/LCIF

Good first demonstration of LCIF technique

(1) Sandia National Laboratories
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[588]/[389] ratio exhibits linearity over nearly
two orders of magnitude

m Better yet, measured ratios agree reasonably well with computed ratios
- Slightly higher, and some deviation at low density

- Examined trends at different times during the current pulse
- Anticipate different temperatures as column is established

Waveforms during excitation Density dependent ratio trends
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1.2 1 n ﬁww L 0.8 § o
) [} §
< 104 06 £ %
% 0.8 1 i » 0.1r¢
= kS D i
8 0.6 1 - 0.4 % g
0.4 1 = ° SetA
Current 0.2 5 : :::g
0.2 1 — Phase shift < e CR predictions |
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Density measurements obtained at different times
essentially overlay each other (111 Sandia National Laboratores
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[447]/[588] ratio captures trends but misses absolutes

L. SetA SetB
- Anticipated T, trends are observed 161 g0
: PO P 1 s NP~
- High temperature at start, low temperatures later on <10 F
.. 5 o084 =
- Measure T, trends mimic computed trends
H - 4 —— Current -02%
- Discrepancy in absolute values are apparent s || I [ —uiesid ] DO
250mT?:rrHeg iime(fs} ’ *
‘V".‘ — T T T
0.038 ® SetA 66
® SetB
2 0.036 | Lo e ot 2 0.03
s N i 8
2 0.034 S o / 4-/%/
o L 2 0.02 | ]
g . ) :: /' g /
0.032 | ® E ]
i ) o © o 00/ i ]
() ¢ e o 0.01 r2 eV o Sen
0030} e ~®* - leV., . |® seB
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Uncertainties in rates, EEDF and/or interpolation of T,
from drift parameters should impact absolute values
Sandia National Laboratories




Part Ill: Applications of LCIF

= Applications of LCIF
lon sheaths, double layers and positive columns

lon sheath Double layers Striated positive column

i

Emphasize structure and evolution of the plasma being studied

Sandia National Laboratories




Demonstration of LCIF technique:
2D-sheath formation

= Examine evolution and structure of ion sheath
= - 1 kV bias applied to inner electrode, 50 pus into afterglow (low n,, low kT,)
= 20 ns snapshots of LCIF, 30 ns steps

Setup

o
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a

py| Time = -30 ns m .
[T 2 Initial structure
10 g 2l -
. . %0 10 "[L} 10 20 9 0
= i 2 0 10 20
= 2,
Q ® g 4 H
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L J — =
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. h_‘ﬁ
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, J/é_,/// "Matrix" sheath
f Sheath evolving
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| | o probes ; _ 0
\ % 1o 0 10 20 0 10 20
X (mm)

y (mm)
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Interesting structure observed in the sheath

- LCIF signal observed deep in the sheath
= Some caused by neutrals, but not all

2D Images Profiles

& On axis
& Off axis

M
o

M
o

Electron densities (10" efem™
P
[ I'Y

® On axis
25 e Off axis

Electron densities (10° e/cm®)

0 2 4 6 8 10 12 14
Height above the electorde (mm)

Signal deep in the sheath caused by
electrons emitted from the electrode (717 santia National Laboratories
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Electrons backfill ion sheath after
voltage Is removed

LCIF detects electrons but not ions
= Examine time immediately after voltage is removed

Negative Pulse
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B Post-pulse
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lon densities can be quantified after voltage is removed (1) Sania Natonal abortoes
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Current

Current

F’

Transient anodic double layer observed

after pulsed excitation

Closer analysis of initial plasma distribution
= Use smaller (25 mm) diameter electrode, 100 mTorr afterglow

Applied Current Earlier timeS
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Higher energy electrons observed around
edge of anode plasma

= Temperature measurements made for +900 ns case
= Challenging measurement because of low level signals

388 nm 589 nm

€
LCIFData &
>
L> X (mm) ) e )
Electron Densities Anodic Fireball
~—~ | =~
. = 4
Analysis £ >
>~ S
t—) X (mm)
Electrons energized by localized electric fields
supporting double layer 7F) Sada RatoralLbortte

S D. Baalrud B. Lonamier and N Hershkowitz. Plasma sourc. Sci. Technol. 18 035002 (2009)
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Double layer more pronounced in ECR
based plasma cathodes

= NASA driven research interested in electron sources for propulsion
= Understand limitations on current extraction
= Host Brandon Weatherford (U. Mich.) to implement LCIF
= Examine coupling of between plasma generation and electron extraction

Setup "Full color" picture Temperature

SmCo

!ﬂ( e

| Aperture
Plate

(s gl g | [Extraction

T Electrode

|Glass
Tube

20 30
X (mm)

40

=0

Multi-structure plasma formed by electron-extracting electrode...
... quite difficult to probe with more conventional means!

@ Sandia National Laboratories




\ LCIF Is being used to study structure in a
positive column

- Positive column is "well understood"” system ot gam po=r
= Studied extensively, use it for calibration '
Y 2Dmmd|ameter
= Platform for fast ionization wave (FIW) studies i“”“” z j 205 memiengt
= Observations may warrant their own study s Dscmosme;”ﬁu’lsé’Dwonage
Radial profiles 2D electron densitymaps Axial profiles

389 nm

— -

587/388

Ne

587/388

| j
| 4471587 1

i, |

-10 . 0 . +10 10 20 30 40 50 60
Radial position (mm) Axial position (mm)

Courtesy of Vladimir Kolobov

Benchmark 2D simulations with measurements
made by LCIF Sandia National Laboratories

V. Kolobov. J. Phvs. D: Appl. Phvs. 39 (2006) R487




Part IV: Future pursuits with LCIF

= Extension of LCIF technique to other operating regimes
- Limitations of helium and paths around this....

Extension of helium

= 23S @10 Torr
C‘? 13
e 10
[&]
— 1012 L
= 23S @ 100 mTorr ]
£ 101 | FE
8 P

1010 | ot -~
% '5?@‘\01"’ “
G 1o | 292 o o=
D - ,\00'(‘"-—
5 108 2P @~
b3 -

10° 1010 1011 1012
Electron Density (cm'3)

Argon LCIF

"Orange" LCIF from 4d
states well separated

~ from"red"lines
emanating from 2p states

Targeting lowest
lying 3p,,state

Notpursuingradiation o " EJE'

El
trapped 2p states LIFat 470.2is wellisolated

257 3 / from other transitions
Coupledto 1s; state
[ 95 ) 2 _
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Helium becomes limited at higher pressures

m Helium proved to be well suited for lower pressure and lower densities
m Limited spectroscopic pathways
= Well known cross-sections
= Highly populated, long lived 23S metastable state

m As density increases and as composition changes
= Radiation trapping/transport becomes problematic

=L/l ~ f. A(Mc2/KT, )" N,L<<1

33P ->238 0.064 >1
43P ->23S 0.02 ~1

(Assuming L=1 cm and N,~ 10%3 absorbers/cm?)

States connected to 23S can become trapped do
to strong coupling and higher populations ! Santia National Laboratores




Pump out of alternative helium states

m At higher pressures and densities, 23P state becomes adequately populated
m Comparable oscillator strengths (into comparable levels)
m Sufficiently lower population compared to 23S

Scaling Trends
23S @ 10 Torr
23S State: o 100 - "Not ok"
K? < 1012 | ]
n ~_0->5 N. ~ 10_5 N 2 23S @ 100 mTorr ]
2(3)S e 0 0 2 ok e "ok"
(] - E
S—>P 0 Lot o ,,,’ i
Q 3 10 -
5 AQ YN~
3 . B 100 | ‘f’?@” off ,/’,
2°P State: o - oW~
1 % 108 ?—3? @9’,’
x -
e e Ll Y | ]
n2(3)P Ap [KO—>P i KS—>P ]none 10° 1010 1011 1012
—>S

Electron Density (cm'3)

Low 2°P state densities should be high enough
to pump but low enough not to trap

@ Sandia National Laboratories



Spectroscopic pathway proposed for
pumping from 23P

= Lower base density of 23P advantageous, but some tradeoffs
m Lose the nice "temperature free" 33P -> 33D transition
m Spectrally dense - many transitions ~ 400 nm

Previous approach Proposed approach
4°D 535

— E
AE~0.7eV

AE ~0.38 eV

AE ~ 0.07 eV 43S
D 3
3 D 338 —
;= 23P —_— 23p
2

Pumping to the 3°S or the 3°D states are not
"off the table" and may be perused (711 Sandia National Lahoratories



Preliminary investigation of proposed

scheme looks promising

m Employ same pulsed positive column used for 23S excitation
= Limit observations to states coupled to 23P
Integration of 20 ns, 10 ns after laser excitation

[447 nm]/[471 nm]
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Alternative gasses are being considered

m Technique is extendable to other gases
m Helium is seldom "gas of choice"
= Helium becomes problematic in mixtures
m Argonis commonly used gas and obvious choice
= More pump-probe pathways to consider
= Individual lower lying 1s, states are anticipated to less populated

r=L/l, ~ foA(Mc?2/kT, )N, L <<1

Helium Argon
33p ->23S 0.064 >1 2P0 ->1S: 0.17 >>1
43P ->23S 0.02 ~1 3Py ->1s: 9x104 0.08

(Assuming L=1 cm and N,~ 10%2 absorbers/cm3)

Low oscillator strengths and possibly lower
g m - I e | - . .
densities make argon attractive \[7] Sandia National Laboratories




Complexity of argon makes extension of
LCIF "challenging”

m Argon offers more spectroscoplc pathways to pursue

- 130 A (3p )‘Pm

"Orange" LCIF from 4d
states well separated
from "red" lines
emanating from 2p states

r‘ 5p)

Targeting lowest — ;
lying 3p,, State (55) = LN

LIF at 470.2 is well isolated
from other transitions
Coupled to 1s, state

11.54

(4s) —

Taken from Bogearts et. al, J. Appl. Phys. 84, 121, 1998
Cross sections and rates not well known for electroni

driven processes from 3p to higher states S ot e




Despite reservations Argon LCIF is being investigated

m Well characterized positive columnn is used to test feasibility
= Microwave interferometer to measure densities
m Pulsed for higher densities/temperatures and stable plasmas
m Time resolved LIF/LCIF with PMT + narrowband filters

Calibration cell Preliminary trends

Pumped 3p, Uphill3p;,  Uphill3d;,

w 470 nm 405 nm 587 nm
80 GHz o 2 :
Gas T I l Gas in - 15 1.5 15
ﬁ 1 1 1
% 5 05 0.5
£
fm 0 0 0
20 mm diame‘ter Q 0 00 400 0 200 400 0 200 400
200 mm length = Time (ns)
X107
F|Itered R 6 < 3
PMT L e 5 /" :
l l _______ 2 0.115 » . . 4 /_o ' 7
Pulse + DC voltage S ,onf* . i ,'/
To digitizing oscilloscopes w AR 2/. !
a4 s s
Density (e/cm?)

Perspective transitions are identified and calibration of the
technique is underway .... Stay tuned!
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Concluding remarks and future directions

m LCIF technique demonstrated in 2D
- Free of “line of sight” constraints
- Good spatial resolution — limited by optical collection
- Decent temporal resolution — limited by ICCD gate times & tolerable signals

m Caution required for proper implementation of the technique
- Uncertainties about rates — Absolute bounds on measurements
- Proper choice of model — Capture the required physics

m Technique should be extendable over broad parameter space
- Higher pressures — neutral collisions
- Smaller dimensions — scattering and access
- Other atomic systems

This work was supported by the Department of Energy Office of Fusion Energy Science
Contract DE-SC0001939
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Neutral mixing of 3°P and 33D needs to be
considered

Proximity (energetically) of states means neutrals can transfer excited population to 32D

Energy spacing between states is 0.067 eV ~ 780 K
Amount of 33D produced from 3P
AN ~K: N AN At and AN ~ K} n AN At

Pressure dependent density bound

Electrons Neutrals

Bound determined by setting the two equal

1010 -
. D
AN Electrons __ KP—>Dne ~1 E
N L 100
AN Neutrals K P—>D n0 2
-
)
Solve for n, 0 108
5
N -12 ©
KP—>D 10 E
n ~ n. ~ N w 107 -
e e 0 -5 0
Ke_.p 10 ' - - -
1 10 100 1000

Pressure (mTorr)

_ Lower limit on electron density scales with pressure (and temperature)
: of neutral background
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m Hereis the "ugly" data
- Predicted trends approach measured trends

Further experiments point to where
Improvement is needed

Photon density Gas density

DRSS
I

p 3sp
70 mTorr

m Two data sets offer some clues
- Low pump power and low concentration of species
m Stimulated emission inducing 33P to 33S transition?
- Population inversion: Ny >> Ng after excitation

Spontaneous Stimulated emission
Emission Je &-absorption-_
dN, o A .,
A WO ARV
d . 8z t ho
After pumping inversion occurs 4.3 um
dN 33p
S ~y
= ArNe, N >> N S o ——
_—
7
Where K4
4
5 | P /
A = All+| = |g(v)— |>10°s7"? /
8 hU II 23p
4
23S

More complete treatment should include photon densities

| [ ! ! m“\/h n n n n n

A 5‘0 1(‘)0 1%0 260 250 0 50 100 150 200 250
Time (ns) -

| u .

@J Sandia National Laboratories
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Complete treatment bypassed through

simplifying approximations

m Assume population inversion occurs only during laser excitation
- Side step need to track absolute photon intensities

AEff — ANom|:

__ lLaser
IThreshold
1+ A€

Normalized LCIF

Normalized time resolved trends

Data SetA: A= Ay,

. P¥pSs

R

RECEY

0 S0 100150200 250

0 50 100150200 250

0 S0 100150 200 250

0 S0 100150200 250

Data SetB: A >> A,,,, (During laser excitation)

Time (ns)

e S e S SR BN B S S e S e I S SOl o i e
2 S S S S A S S I ' L% U S SO S
!
"11
....... 1
0 50 100 150200 250 0 50 100 150200 250 0 50 100150 200250 0 50 100 150200 250

Red: CRM predictions (n. =5x101%, T.~4 eV)

Blue: Measured LIF/LCIF
Simplifying assumption produces trends
consistent with observation
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Key uphill transitions are not significantly impacted
by radioactive coupling

= Dominant population pathway is still through excited 33P state
- Final densities of 33P state will change, but this is normalized out in analysis

Averaged trends

Data Set A: A= A Data Set B: Ag;>> Anom (During laser excitation)

= S
c c
: @)
% 10 o
o FEE (98]
g °
< =
i =
0 107 IS
= —
© 0
o 2 SO SO S N A LI \ 7 4 SRS Pty (S, Sy ) S o
10-3 TDIIIilTIIiizziz: . T P A S S FE S e S R o EEE R H fIIii b ."J:"L ritIiiiis FEEE R b P R R 33
105 100 10n 107 0 100 10m  10°

Electron density (cm3) Electron density (cm-3)

Caution should still be used if considering the 33S state for
normalization (1) Sandia National Laboratories
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[447]/[588] ratio captures trends but misses absolutes

- Anticipated T, trends are observed

- Measure T, trends mimic computed trends

447/588 ratio

- Discrepancy in absolute values are apparent

"On the level" "On the rise"
0.038 [ °*
0.036 F & 3 -
/ -~ N ®
A 7 I
0034 F 81 ¢ pr ;
L1 I /( ° /
0.032 cpts | £ L
AY "' / y: //
0.030 [\ o= 7 £ .
[ / o o 4 ® SetA
0.028 [ oo ,’ e setB
r \. ’/ ® SetC

65 70 75 80 85 90 95
Electron temperature (eV)

447/588 ratio

- High temperature at start, low temperatures later on

0.04
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0.02 |

0.01
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1.2 o0l i 0.8
Z1.0 WM“’ 06
= :
=4

S 06 04
[&]

e
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e
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Marmalized phase shift

=1
(=1
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(=1

Time (us)

T,~7.5t0 9.5 eV T, ~6.5eV

j [ ¢ e T~ //—--;\

'8 eV \.\

4eV

;ZeV e SetA [l

® SetB ||

L1 eV ® SetC |]

1010 1011 1012

Measured densities (e/cm3)

Uncertainties in rates, EEDF and/or interpolation of T,
from drift parameters should impact absolute values
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Analysis of ion-matrix sheath is used to
further test LCIF technique

- Immediately after the pulse is applied
= Electrons are rapidly pushed away from electrode
= But ions should have little time to respond

4
e = '5',= O T e S T _ @ 2
0 T : Ccu O
-20 -10 0 10 20 0 10 20
X (mm) y (mm)
= Using Poisson's equation and assuming quasi neutrality before the application of
the pulse:
e LAY
VV =—n — n~—%
&g eAX

= For avoltage of 1 kV and a thickness of ~5 mm:

n, ~ 4 x 10° electrons/cm?

Reasonable cross-check of LCIF technique
@ Sandia National Laboratories




Preliminary survey points to useful transitions
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E/N (Td)
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Preliminary investigation of proposed
scheme looks promising
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