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Laser-collision induced fluorescence provides 
measure of electron density and "temperature"

Motivation: What is the density? What is the temperature? Where and When?
More traditional probe techniques may couple and perturb
Optically passive techniques are line-of-sight limited
Optically active-techniques such as Thomson scattering pose their own set of challenges

In this presentation
Laser-collision induced fluorescence (LCIF) primer

Collisional-radiative model used to predict LCIF
Applied to triplet manifold of Helium

Implement and benchmark technique
Experimental setup
Time evolution of LCIF and time integrated LCIF

Applications of LCIF: 
Ion sheaths, transient double layers, positive columns

Future directions and concluding comments
Extension of helium
Investigate argon
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Part I: LCIF concepts and key trends

Overview 
LCIF concepts
Collisional-radiative model for helium
Key scaling trends

3

LCIF Concept CR Model Key scaling trends
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LCIF is based on redistribution of excited 
state by plasma electrons

Laser excitation causes populates an intermediate state
Relaxation processes deplete excited state

Portion of excited state population gets redistributed into "uphill" states
Driven by interaction with energetic plasma electrons

LCIF looks for changes in emission of neighboring 
states after laser excitation
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Redistribution after laser excitation is complex

A "good" model is required to predict transfer between levels 
Employ a collisional-radiative model (CRM) to predict redistribution
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"Electron mixing" "Photon mixing" "Neutral mixing"

Approach is applicable to various atomic and 
molecular systems of interest

Electron-temperature dependent rates
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Helium atom serves as target species for 
LCIF measurements

Employ Helium to start with - considering argon
"Simple system" with "better known" rates

Utilize functionalized form of cross-sections compiled by Ralchenko1

Integrate to get rates, compare to measured rates 2,3

1: Yu. Ralchenko, R. K. Janev, T. Kato, D. V. Fursa, I. Bray, F. J. De Heer, Atomic Data and Nuclear Data Tables 94, 603 (2008)
2: R. Denkelmann, S.Maurmann, T. Lokajczyk, P. Drepper, and H. –J. Kunze, J. Phys. B: At. Mol. Opt. Phys. 32,  4635 (1999). 

R. Denkelmann, S. Freund and S. Maurmann, Contrib. Plasma Phys. 40, 91 (2000).
3: B. Dubreuil and P. Prigent, J. Phys. B: At. Mol. Opt. Phys. 18,  4597 (1985).

Computed and measured excitation rates in Helium

Accuracy of ne, Te depend on knowledge of Kij(kTe)

33S → 33P, 33D 33P → 33S, 33D 33P → 43S, 43P, 43D

Key transitions
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CRM predicts evolution of various helium states 
after laser excitation

Temporal evolution serves as a partial "fingerprint" of electron interaction
Analyze shape of decay above ne~ 1011 electrons/cm3

Below ne~ 1011 absolute intensities are needed

Need at least two time-resolved profiles to uniquely obtain ne, kTe

Computed temporal evolution
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Time integrated intensity trends are utilized 
instead of time resolved LCIF

Examine ratios of time integrated LCIF
Eliminates need for absolute calibrations
Still need relative efficiencies of imaging system

Capitalize on "kTe independent" coupling of 33P to 33D
Ratio of 588 nm to 389 nm yields ne

Density + Ratio of 447nm to 588 nm yields kTe
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Small energy gap leads to "kTe independent" 
coupling of 33P to 33D

23S

23P

33D

43D

33S
33P

33P → 33D
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33P → 43D

Rates

Cross-sections Rates
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Considerable fraction of the electrons are 
capable of driving the interaction



Part II: LCIF implementation and benchmark

Implement and benchmark technique
Experimental considerations
Benchmarking LCIF - compare observations with anticipated trends
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Experimental implementation of the LCIF is realized
Nanosecond pulsed laser used for excitation

< 10 ns FWHM, < 0.1 cm-1 line width
Timing of experiment controlled by delay generators

Move experiment and imaging with respect to firing of the laser
Image LCIF with gated-intensified CCD

Narrow (~ 1 nm FWHM) interference filters centered on lines of interest
Take two images per transition considered

Total emission and plasma induced emission (PIE) - subtract the two

Timing sequenceOptical setup

Time

50 ms (20 Hz laser)

Time

<10 ns FWHM

ICCD gate
LCIF + PIE

ICCD gate
PIE only

Need to make six (3 x 2) measurements to obtain ne, kTe
11
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Pulse discharge currents generate broad density range
• ~ 10 Microseconds, 80 GHz interferometer 

Compute drift velocities and extract electron temperatures
• Use published drift parameters

Pulsed positive column is utilized to 
benchmark LCIF technique

12 J. L. Pack, R. E. Voshall, A.V. Phelps and L. E. Kline, J. Appl. Phys. V71, p5363 (1992)
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Positive column is a good vehicle to benchmark LCIF technique



First steps: Verify time resolved LCIF to test CRM

First sets of measurements presented some surprises
• Strong radiative coupling between 33P and 33S states 

Proper accounting produced observed trends
• Measured data and predicted behavior are consistent

Good first demonstration of LCIF technique  

Key transitions
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43D ->23P33D ->23P33S ->23P33P ->23S

Representative results

389 nm 588 nm707 nm 447 nm
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[588]/[389] ratio exhibits linearity over nearly 
two orders of magnitude 
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Better yet, measured ratios agree reasonably well with computed ratios
• Slightly higher, and some deviation at low density

• Examined trends at different times during the current pulse
• Anticipate different temperatures as column is established 
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[447]/[588] ratio captures trends but misses absolutes
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Uncertainties in rates, EEDF and/or interpolation of Te
from drift parameters should impact absolute values

• Anticipated Te trends are observed
• High temperature at start, low temperatures later on

• Measure Te trends mimic computed trends
• Discrepancy in absolute values are apparent
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Part III: Applications of LCIF
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Applications of LCIF
ion sheaths, double layers and positive columns

Emphasize structure and evolution of the plasma being studied

Ion sheath Double layers Striated positive column



Demonstration of LCIF technique:
2D-sheath formation 

Examine evolution and structure of ion sheath 
- 1 kV bias applied to inner electrode, 50 μs into afterglow (low ne, low kTe)
20 ns snapshots of LCIF, 30 ns steps

Setup Data

Voltage applied

"Matrix" sheath

Sheath evolving

Initial structure

Final sheath 
structure

Decent temporal and spatial resolution demonstrated
17



Interesting structure observed in the sheath

LCIF signal observed deep in the sheath
Some caused by neutrals, but not all
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y 
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m
)

Signal deep in the sheath caused by 
electrons emitted from the electrode
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Height above electrode (mm)
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Electrons backfill ion sheath after 
voltage is removed

LCIF detects electrons but not ions
Examine time immediately after voltage is removed

Ion densities can be quantified after voltage is removed
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Transient anodic double layer observed 
after pulsed excitation
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Closer analysis of initial plasma distribution
Use smaller (25 mm) diameter electrode, 100 mTorr afterglow
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Higher energy electrons observed around 
edge of anode plasma
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Electrons energized by localized electric fields 
supporting double layer
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LCIF Data

Analysis

Temperature measurements made for +900 ns case
Challenging measurement because of low level signals
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S. D. Baalrud , B. Longmier and N Hershkowitz, Plasma sourc. Sci. Technol. 18 035002 (2009)

"Anodic Fireball"

S. Baalrud et. al+900 ns
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Double layer more pronounced in ECR 
based plasma cathodes
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NASA driven research interested in electron sources for propulsion 
Understand limitations on current extraction

Host Brandon Weatherford (U. Mich.) to implement LCIF
Examine coupling of between plasma generation and electron extraction 

Setup "Full color" picture Density Temperature
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Multi-structure plasma formed by electron-extracting electrode...
… quite difficult to probe with more conventional means!



LCIF is being used to study structure in a 
positive column
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Positive column is "well understood" system
Studied extensively, use it for calibration

Platform for fast ionization wave (FIW) studies
Observations may warrant their own study

Courtesy of Vladimir Kolobov

Benchmark 2D simulations with measurements 
made by LCIF

V. Kolobov, J. Phys. D: Appl. Phys. 39 (2006) R487



Part IV: Future pursuits with LCIF
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Extension of LCIF technique to other operating regimes
Limitations of helium and paths around this….

Argon LCIFExtension of helium



Helium becomes limited at higher pressures

Helium proved to be well suited for lower pressure and lower densities
Limited spectroscopic pathways
Well known cross-sections
Highly populated, long lived 23S metastable state

As density increases and as composition changes 
Radiation trapping/transport becomes problematic

( ) 1// 2/12 <<≈= LNkTMcflL AAnmmfp λτ

Transition fnm τ

33P ->23S 0.064 >1

43P ->23S 0.02 ~1

(Assuming  L=1 cm and NA~ 1013 absorbers/cm3)

States connected to 23S can become trapped do 
to strong coupling and higher populations
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Pump out of alternative helium states

At higher pressures and densities, 23P state becomes adequately populated
Comparable oscillator strengths (into comparable levels)
Sufficiently lower population compared to 23S

Low  23P state densities should be high enough 
to pump but low enough not to trap 
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Spectroscopic pathway proposed for 
pumping from 23P
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Lower base density of 23P advantageous, but some tradeoffs
Lose the nice "temperature free" 33P -> 33D transition
Spectrally dense - many transitions ~ 400 nm

23S 23S

23P 23P

Previous approach 

33D
33P

43D

ΔE ~ 0.07 eV

Proposed approach 

ΔE ~ 0.7 eV
ΔE ~ 0.14 eV

43D43S

53S

ΔE ~ 0.38 eV

33S

Pumping to the 33S or the 33D states are not 
"off the table" and may be perused



Preliminary investigation of proposed 
scheme looks promising
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Employ same pulsed positive column used for 23S excitation
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Integration of 20 ns, 10 ns after laser excitation



Alternative gasses are being considered

Technique is extendable to other gases
Helium is seldom "gas of choice"
Helium becomes problematic in mixtures

Argon is commonly used gas and obvious choice
More pump-probe pathways to consider
Individual lower lying 1sx states are anticipated to less populated

( ) 1// 2/12 <<≈= LNkTMcflL AAnmmfp λτ

Transition fnm τ

33P ->23S 0.064 >1

43P ->23S 0.02 ~1

Transition fnm τ

2p10 ->1s5 0.17 >>1

3p10 ->1s5 9x10-4 0.08

(Assuming  L=1 cm and NA~ 1013 absorbers/cm3)

Helium Argon

Low  oscillator strengths and possibly lower 
densities make argon attractive
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Complexity of argon makes extension of 
LCIF "challenging"

Targeting lowest
lying  3p10 state

Taken from Bogearts et. al, J. Appl. Phys. 84, 121, 1998

Argon offers more spectroscopic pathways to pursue

LIF at 470.2 is well isolated 
from other transitions
Coupled to 1s2 state

Cross sections and rates not well known for electronic 
driven processes from 3p to higher states

"Orange" LCIF from 4d 
states well separated 
from "red" lines 
emanating from 2p states

Not pursuing radiation 
trapped 2p states
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Despite reservations Argon LCIF is being investigated
Well characterized positive columnn is used to test feasibility

Microwave interferometer to measure densities
Pulsed for higher densities/temperatures and stable plasmas
Time resolved LIF/LCIF with PMT + narrowband filters

Perspective transitions are identified and calibration of the 
technique is underway …. Stay tuned!

Calibration cell Preliminary trends
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Concluding remarks and future directions

LCIF technique demonstrated in 2D
• Free of “line of sight” constraints
• Good spatial resolution – limited by optical collection
• Decent temporal resolution – limited by ICCD gate times & tolerable signals

Caution required for proper implementation of the technique
• Uncertainties about rates – Absolute bounds on measurements
• Proper choice of model – Capture the required physics

Technique should be extendable over broad parameter space
• Higher pressures – neutral collisions
• Smaller dimensions – scattering and access
• Other atomic systems
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Thank you
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Neutral mixing of 33P and 33D needs to be 
considered
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Proximity (energetically) of states means neutrals can transfer excited population to 33D
Energy spacing between states is 0.067 eV ~ 780 K
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References for rates and cross-sections

Superelastic
• Klein Rosseland
• Sobelman
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Further experiments point to where 
improvement is needed

Here is the "ugly" data
• Predicted trends approach measured trends

Two data sets offer some clues
• Low pump power and low concentration of species

Stimulated emission inducing 33P to 33S transition?
• Population inversion: NP >> NS after excitation
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Complete treatment bypassed through 
simplifying approximations

Assume population inversion occurs only during laser excitation
• Side step need to track absolute photon intensities
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Normalized time resolved trends

Simplifying assumption produces trends 
consistent with observation37
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Key uphill transitions are not significantly impacted 
by radioactive coupling

Dominant population pathway is still through excited 33P state
• Final densities of 33P state will change, but this is normalized out in analysis

Averaged trends

Caution should still be used if considering the 33S state for 
normalization 
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[447]/[588] ratio captures trends but misses absolutes
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Measured densities (e/cm3)
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• Anticipated Te trends are observed
• High temperature at start, low temperatures later on

• Measure Te trends mimic computed trends
• Discrepancy in absolute values are apparent



Analysis of ion-matrix sheath is used to 
further test LCIF technique

Immediately after the pulse is applied
Electrons are rapidly pushed away from electrode
But ions should have little time to respond
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Using Poisson's equation and assuming quasi neutrality before the application of 
the pulse:
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For a voltage of 1 kV and a thickness of ~ 5 mm: 

ne ~ 4 x 109 electrons/cm3

Reasonable cross-check of LCIF technique
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Preliminary survey points to useful transitions
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Preliminary investigation of proposed 
scheme looks promising
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