

Quantification of Uncertainty in Extreme Scale Computations (QUEST)

SAND2011-7062C

Director: Habib Najm, Sandia National Laboratories
hnna.jm@sandia.gov

Members:

Habib Najm (PI), Bert Debusschere, Michael Eldred	Sandia National Labs
Roger Ghanem (PI)	Univ. of Southern California
David Higdon (PI), James Gatticker	Los Alamos National Lab
Omar Ghattas (PI), Robert Moser, Ernesto Prudencio	Univ. of Texas at Austin
Omar Knio (PI)	Johns Hopkins Univ.
Youssef Marzouk (PI)	Mass. Inst. of Technology

Goals

QUEST goals include:

- Deliver expertise, advice, and state of the art UQ algorithms and software tools to SciDAC projects utilizing extreme scale computations on advanced computational architectures
- Shepherd forward our extensive repertoire of UQ theory, algorithms, and software, and enhance their robustness/effectiveness for relevant benchmark problems in extreme-scale computational settings.

Scope

The scope of QUEST covers a range of UQ activities including:

- UQ problem setup
- Characterization of the input space
- Local and global sensitivity analysis
- Adaptive stochastic dimensionality and order reduction
- Forward and Inverse UQ
- Fault tolerant UQ methods
- Model comparison and validation

The QUEST team brings together a wide range of expertise in UQ methods and software development covering the above landscape, with application to large-scale computations of physical systems

Key Elements of UQ

- Probabilistic framework
 - Uncertainty is represented using probability theory
- Parameter Estimation, Model Calibration
 - Experimental measurements
 - Regression, Bayesian Inference
- Forward propagation of uncertainty
 - Polynomial Chaos methods
 - Intrusive methods
 - Non-intrusive methods
- Model comparison, selection, and validation
- Model averaging
- Experimental design and uncertainty management

Team Expertise and capabilities

- **SNL** (Najm, Debusschere, Eldred) – Forward and inverse UQ methods, design under uncertainty; **DAKOTA, UQTK**
- **USC** (Ghanem) – Intrusive UQ methods, probabilistic modeling
- **JHU** (Knio) – Sparse and adaptive forward UQ methods
- **UT** (Ghattas, Moser, Prudencio) – Large scale inverse problems, validation, Inverse UQ; **QUESO**
- **LANL** (Higdon, Gatticker) – Gaussian Process modeling, inverse UQ; **GPMSA**
- **MIT** (Marzouk) – Calibration, adaptive sampling, Inverse UQ, experimental design

QUEST UQ Tools – DAKOTA

- <http://dakota.sandia.gov/>
- Large-Scale Optimization, non-intrusive UQ
- Model calibration, global sensitivity analysis
- Design of Experiments
- solution verification, and parameteric studies
- Over 4000 download registrations
 - govt, industry, academia
- Generic interface to black-box application model
- Java front end
- Used in a wide variety of applications
- GNU LPGL license

QUEST UQ Tools – QUESO

- MPI/C++ library
- Large-scale inverse UQ
- Statistical algorithms for Bayesian inference
- model calibration, model validation,
- decision making under uncertainty
- Parallel multi-chain MCMC
- Used by many investigators at the UT Austin PSAAP center
- Being integrated with DAKOTA

QUEST UQ Tools – UQTK

- <http://www.sandia.gov/UQToolkit/>
- Lightweight C++ library
- Intrusive Polynomial Chaos UQ methods
- Non-intrusive sparse-quadrature UQ
- Bayesian inference
- Custom representations of uncertain information
- Well suited for prototyping, tutorial/training purposes

QUEST UQ Tools – GPMSA

- Serial matlab code – C++ conversion plans
- Integration with DAKOTA
- Bayesian inference
- Gaussian process surrogates
- Global sensitivity analysis, forward UQ
- Model calibration/parameter estimation
- Statistical models to characterize model discrepancy or structural model error
- Prototyping tool