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Why study pit initiation in Aluminum? 

High consequence systems: minimal separation between initiation and damage 

microelectronics – nanomaterials integration 

Al 

Al-Au 

intermetallic 

Reliability prediction requires relevant physical & chemical inputs of localized corrosion 

mechanisms 

modeling & predicting system reliability 

Al interconnects can undergo galvanic corrosion 
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Proposed mechanisms for pit initiation 

McCafferty & Natishan, 218th ECS #1322  

Vacancy condensation - Point 

Defect Model (Macdonald) 

Nano-corrosion cells - Electrokinetic Model 

(McCafferty) 

2D void formation @ Vcrit  

VAl
’’’ 

Al 

dissolution & growth rate disparity  

Oxide grain boundaries -

Marcus, Maurice & 

Strehblow 

Aggressive anion and electric field 

perturbation - Okada 

2 mm 

electrostriction  
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Pit initiation in model oxides on Al coincides 

with oxide defect activity  

I/V response shows the presence of a proton-activated process that leads to accentuated 

current generation – anodic dissolution can compete with pit initiation 

Mesoscale capillary measurements at < 0.01 cm2  Macroscale measurements at 1 cm2  

~150 nm diameter grain Al(111) film in de-aerated 50 mM NaCl 

pH 5.9 

pH 7.0 

void/pore transition 

pH 5.9 

pH 7.0 

void/pore transition pH 7.0 

200 nm Initially anhydrous oxides – O2, O plasma, H2O(v) – film & bulk 

including single crystal 
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VO.. saturation through a simple equilibrium: 

VO.. + H2O → OO + 2H+ 

 

Alternate reaction to consider: 

VO.. + H2O + OO
2- → 2OH. 

 

Ox:El interface barriers: 

AlAl → Al3+(aq) + VAl’’’   

retarded by surface adsorbates or chelating species 

Void nucleation as a means for relieving 

charge transport impedance 

transport barrier 

barrier relieved Al oxidation increases VO.. 

saturation void nucleation 

*interfacial VO
i.. 

+ 

+ 

+ 

+ 

+ 

+ 

Can imaging help determine how voids contribute to pit initiation? 



pH 7.0, N2 

pH 5.9, N2 

current on current off 

Chronopotentiometry highlights the co-

incidence of pitting & defect activity 

pH 5.9, N2 

pH 7.0, N2 

pH 7.0, O2 

Pitting and accentuated dissolution compete 

700 nm thick Al(111) film in de-aerated 50 mM NaCl 
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Similar defect processes operative in not 

so model oxides 

Model oxides may represent one way of probing 

the limiting cases of defect chemistry 

99.999% polycrystalline Al aqueous alumina (30 nm polish) – oxide allowed to dry  

equilibrated 1 hour 50 mM Cl- 

1.4 mA·cm-2, 1.4 mC 

1.4 mA·cm-2 

2.8 mA·cm-2 

 

pit 

on 

off 

500 nm 



Structural impact of polarization is greatest at 

the high step density facets of the grains 

700 nm thick Al(111) film in de-aerated 50 mM NaCl pH 7 

– larger grains for better spatial discrimination 

0.6 mA·cm-2 anodic 

polarization for 

variable time 

0 sec 

170 sec 1600 sec with pitting 

Possible pit covered with oxide 

void/pores form on 

contours into grain 

boundaries as well 

as terraces 

Local dissolution at 

the terrace surface 
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Can more detail be learned by restricting 

area to enable imaging?  

Size limits – leak free seals with minimal 

under seal activity at 20 mm diameter, 

1x10-6 cm2 

Current limits – galvanostatic polarization 

at relevant current densities 

9 

Snapshot approach 

electrolyte filled 



Defect and breakdown signatures are 

measureable in the micro-cell 

Defect response is observed with anodic 

polarization 

Breakdown events are observed at 

potentials > -550 mV vs. Ag/AgCl 

Likelihood of a breakdown event scales 

with current magnitude  

400 mV 

current on 

*vs. Ag/AgCl 

* 

Anodic polarization using a 20 mm diameter capillary 

Drive single breakdown events – characterize the event signature – correlate events 

with evolved surface structure 
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Attributes of Single Discharge Event Experiments 
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current on 

4 mA·cm-2 

7 mA·cm-2 

11 mA·cm-2 

14 mA·cm-2 

• Increased applied current density – 

higher probability of creating an 

event 

• increased applied current density - 

shorter induction time for event 

occurrence 

• Two types of depolarization 

signatures 

• large magnitude discharge 

events (A) 

• small magnitude or extended 

time perturbations (B)   

 

A 

B 
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Sufficient current becomes localized to drive 

early stage pit formation 

pit #1 

4 mA·cm-2 

precursor #2 

Oxide cover 
• Initiation signature appears to 

be the small dE/dt fluctuations  

400 nm 

• Initiation sites – high 

topographic gradient 

(GBs) 

• Void/pore formation is 

most prevalent in same 

regions 

• Multiple initiation sites 

can be active 

concurrently 

initiation point 

200 nm 

10 mm 
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Electrochemical noise may also signal slow 

growth of an early stage pit  

7 mA·cm-2 

500 nm 

oxide cover 

rupture 

1 kV 

current on 

initiation point 

no discrete discharge 

event detected 

An occluded pit is observed 

despite the absence of a 

significant magnitude discharge 

event 

• EC noise is a better indicator 

of micro-cell activity 
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Extended lateral growth of a pit complex can 

exhibit a similar low amplitude signature 

7 mA·cm-2 

Lateral propagation favored by 

several factors 

• (111) texture – favored dissolution 

planes are in-plane 

• Grain boundary as a short circuit 

5 kV 

1 kV 

Single active area detected for this experiment 

500 nm 

500 nm 

lateral pit growth 
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Staged pit growth aided by a grain boundary 

and compliant oxide cover 

500 nm 

400 nm 

5 kV 

1 kV 1 kV 

350 V 

500 nm 

400 nm 

Propagation path along GB 

55 tilt shows the GB channel 
Facet is attacked as a slower rate 

Oxide cover 

Multiple pits observed at  

this site 
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Evidence exists for interfacial voids 

acting as initiation sites 

Examples of void/pore clustering at the highly facetted grain edge 

Pore perforated initiation site 

Growth direction – undercut 

original oxide 

These initiation structures are 

seen in evolving pit structures 

100 nm 

300 nm 400 nm 

100 nm 

300 nm 
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Interfacial voids as pit precursors 

Void nucleation 

Growth and pore formation 

Stable cluster formation – oxide perforation 

Pit nucleation under oxide membrane 

void/pore clusters 

High gradient topology as the nucleation 

region: 

Greatest local flux of Al cations 

Structurally strained oxide 

Steps stabilize void nucleation 



O- 

OH- 

Cl- 
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Polarization drives oxide growth with 

minimal compositional change to the film 

• Oxide growth: 10% from electrolyte immersion, 

20 to 40% with polarization 

• Cl- primarily restricted to the hydrated outer layer 

ToF-SIMS 
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The lower impedance of a hydrous oxide 

requires higher currents to yield pits 

19 mA·cm-2 

Electropolished Al (99.999%) 

20 V, 60 sec, -35C 

1 mm 400 nm 

tox
i = 2.7 nm  

4 mA·cm-2 
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Conclusions 

• Restriction of electrode size and controlled galvanostatic polarization can 

be used to drive and characterize single breakdown events   
 

• Breakdown produces structures ranging from undercut membranes to 

oxide capped early stage pits 

 

• Pits initiate predominantly at the highly stepped perimeters of the grain 

boundaries – regions demonstrated to be active void and pore nucleation 

sites 

 

• Void/pore structure is observed in evolved pits arguing that void nucleation 

serves as the precursor event for pit initiation in aluminum 

 

• Currently working to apply this demonstrated level of control in in situ 

observation of pit initiation 


