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Why study pit initiation in Aluminum?

High consequence systems: minimal separation between initiation and damage

microelectronics — nanomaterials integration

modeling & predicting system reliability
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Reliability prediction requires relevant physical & chemical inputs of localized corrosion
mechanisms
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Proposed mechanisms for pit initiation
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Pit initiation in model oxides on Al coincides
with oxide defect activity

~150 nm diameter grain Al(111) film in de-aerated 50 mM NacCl

Macroscale measurements at 1 cm? Mesoscale capillary measurements at < 0.01 cm?

02 ] a4

0.4 wl T ETTTTTTT
3 o] : —
206 Q 08 - pH 5.9
o <
S 2
< 08 2 10 e transition
= ] =
g ] s R
L 101 5 2 '
£ ] &

.2 ; 1.4 A

.4 1B

10E1 10E-10 10609 10E08 10607 10E08 1 0E05 10604 10E.03

Current Density (A'cm'2) Current Density (Alcm?) 3
Initially anhydrous oxides — O,, O plasma, H,0O(v) — film & bulk
including single crystal

I/V response shows the presence of a proton-activated process that leads to accentuated
current generation — anodic dissolution can compete with pit initiation
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‘ Void nucleation as a means for relieving
charge transport impedance

transport barrier saturation void nucleation
+
+
—_— +
n
“interfacial Vo'.. Al oxidation increases V.. barrier relieved

V(.. saturation through a simple equilibrium:
Vg.. + H,O — Og4 + 2H*

Alternate reaction to consider:
Vg.. + H,O + O5% — 20H:

Ox:El interface barriers:
Al — APF*(aq) + Vu
retarded by surface adsorbates or chelating species
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Can imaging help determine how voids contribute to pit initiation? @ Sandia



‘_ Chronopotentiometry highlights the co-
Incidence of pitting & defect activity

700 nm thick Al(111) film in de-aerated 50 mM NacCl
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Pitting and accentuated dissolution compete
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‘ Similar defect processes operative in not
so model oxides

99.999% polycrystalline Al aqueous alumlna (30 nm pollsh) oxide allowed to dry
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Structural impact of polarization is greatest at
the high step density facets of the grains

700 nm thick Al(111) film in de-aerated 50 mM NaCl pH 7
— larger grains for better spatial discrimination

0.6 pA-cm=2 anodic
polarization for
variable time

Y[um] 0.0
void/pores form on
contours into grain
boundaries as well .,
as terraces
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Can more detall be learned by restricting
area to enable imaging?

Snapshot approach

| electrolyte filled

| HV WD
1.00 kV |856.2

Size limits — leak free seals with minimal
under seal activity at 20 um diameter,
1x106 cm?

Load (g)

Current limits — galvanostatic polarization
at relevant current densities
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‘ Defect and breakdown signatures are
measureable in the micro-cell

Anodic polarization using a 20 um diameter capillary
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Drive single breakdown events — characterize the event signature — correlate events
with evolved surface structure
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Potential (V vs. Ag/AgCl)
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Attributes of Single Discharge Event Experiments
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* Increased applied current density —

higher probability of creating an
event

*increased applied current density -
shorter induction time for event
occurrence

« Two types of depolarization
signatures

*large magnitude discharge
events (A)

« small magnitude or extended
time perturbations (B)
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Sufficient current becomes localized to drive

early stage pit formation
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* Initiation sites — high
topographic gradient
(GBs)

¢ «\Void/pore formation is
most prevalent in same
regions
.+ Multiple initiation sites

" can be active
concurrently
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‘ Electrochemical noise may also signal slow
growth of an early stage pit

7 pA-cm®

__ oxide cover.

An occluded pit is observed
despite the absence of a
significant magnitude discharge
event

* EC noise is a better indicator
of micro-cell activity
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Lateral propagation favored by
several factors

*(111) texture — favored dissolution
planes are in-plane

» Grain boundary as a short circuit
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and compliant oxide cover

Staged pit growth aided by a grain boundary
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Evidence exists for interfacial voids
acting as initiation sites

Examples of void/pore clustering at 1

e highly facetted grain edge

These initiation structures are
seen in evolving pit structures
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Pore perforated initiation site
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Void nucleation
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Interfacial voids as pit precursors
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Pit nucleation under oxide membrane

High gradient topology as the nucleation
region:

Greatest local flux of Al cations
Structurally strained oxide

Steps stabilize void nucleation
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Polarization drives oxide growth with
minimal compositional change to the film

— 10 pm

» Oxide growth: 10% from electrolyte immersion,
20 to 40% with polarization

* CI- primarily restricted to the hydrated outer layer

—— 10 pm
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The lower impedance of a hydrous oxide

Potential (V vs Ag/AgCl)
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Conclusions

Restriction of electrode size and controlled galvanostatic polarization can
be used to drive and characterize single breakdown events

Breakdown produces structures ranging from undercut membranes to
oxide capped early stage pits

Pits initiate predominantly at the highly stepped perimeters of the grain
boundaries — regions demonstrated to be active void and pore nucleation
sites

Void/pore structure is observed in evolved pits arguing that void nucleation
serves as the precursor event for pit initiation in aluminum

Currently working to apply this demonstrated level of control in in situ
observation of pit initiation

Sandia
National _
Laboratories



