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We are studying weakly coupled relaxors for  (dy)&a
high energy density capacitors
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These so called weakly coupled relaxors exhibit high permittivity and can
exhibit low de’/dT above the relaxation temperature

PSU Ogihara, Randall, and Trolier-McKinstry, JACerS 92 [1] 3554-61 (2009)

OSU Raengthon and Cann, JACerS 95 [11] 3554-61 (2012).
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Why do we need high permittivity dielectrics? [)Es..

High Energy
Density Dielectrics

DC and Pulsed DC AC
Why high energy
density
dielectrics?
Power Quality and PV Inverters
Smoothing (Wide Frequency AC)

Low electro-mechanical response

Chemical

Temperature stable

Reliable




Energy Density (J!cms)

Can’t we just use BaTiO,?
= Commercial capacitors exhibit electric field tuning
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= Dielectric constant changes with applied field

= Commercial capacitors are optimized for high €’ but not energy density
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Energy stored in a capacitor is:
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Reliable high capacitance multilayer ) e
capacitors are required for grid surety
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Goals

1. Develop MLCCs based on the Bi(Zn, ;Ti, s)O; —BaTiO; system
that exhibit favorable voltage tuning behavior

2. Study the dielectric relaxation in frequency and time
domains
a) Moderate piezo response

b) Forward Fourier transform reveals dominant frequency
components from a time domain signal

c) Superposition does not hold for circuits containing non-linear
capacitive elements

3. Adjust chemistry to achieve widest possible operating
temperature window for AC and pulsed DC applications
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200nF MLCCs were fabricated in house =

200nF MLCC

BZT-BT powder was synthesized
from BaCO,, Bi,O5, Zn0O, and TiO,

Powders were calcined at 950°C for
12 hrs in air

Particle size was reduced by ball
milling

Milled powders were blended with
Ferro B-73305 PVB-based binder

15.25 cm wide tapes were cast on a
heated bed

Tapes were printed with DuPont
9894 Pt-Ink

Sample burnout in flowing O, and
sintering in stagnant air




Blistered 200 nF MLLCC were fabricated initially ) g
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MLCC sintered at 1210°C MLCC sintered at 1040°C
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MLCC dielectric exhibits high-Z (bright) core @

Y .

| EHT =1500ky WD= 55mm  Signal &A= BSD File Name = MLCC_1AIl_electrds_surf_032 tif

Possible domains (twins) in microstructure
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TEM reveals same core-shell compositional Ok
gradients

SEM HAADF TEM

File Marme =

| MAG: 20000 x HV: 200.0 k¥ WD: -1.0 mm




STEM EDS mapping revealed Bi and Zn ) s,
segregation
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400 nm 1309
MAG: 20000 x HV: 200.0 k¥ WD: -1.0 mm

1340
HAADF MAG: 20000 x HV: 200.0 kV. WD: -1.0 m|

400 nm 1309
MAG: 20000 x HV: 200.0 k¥ WD: -1.0 mm
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HAADF also reveals presence of 90° domains O
in pseudo-cubic BZT-BT

90° domains




Energy densities of >1.3 J/cc have been demonstrated ) s,
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We are interested in pulse discharge =

behavior as well
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Most measurements we make are in frequency domain but pulse discharge occurs in

the time domain... p

—/\/\/\/\/\_
R=1Meg R,




Waveform shapes changed with increasing [T,
temperature
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Loss of small signal between 200 and 300 ns with increasing temperature...thermal
activation of slow polarization mechanisms
Capacitance appears to increase with temperature (higher peak current)



Dielectric relaxation was also shown at ) e
elevated temperatures
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250 e 05
[ P ] (°C) (nF) | (nF)
200 <« /7 T~ . Jo4 _55 170
™ “ ——100Hz | -40 159
c . o
§ 150 . — itz | ] 0.3 ~ -30 214
E | —— 10 kHz : g 10
= [ | o>
§ 100 . 402 22.5 116 208
o .
O . ] 56 140
50 | > o1 90 183
100 207

0.....|.... M “ e o "0
-100 -50 0 50 100 150 200

1
Temperature (°C) Y, LC




The energy stored by the MLCC must )

equal the energy dissipated during discharge
MLCC, 3.2V, 56°C

Stored (DC charge)

1

E=— CV2 E= %142;sz(3.341/0[$)2 =7.92x107" Joules
2
Dissipated during discharge
by circuit resistance
I=qys.
— -2 = ] 2 — -7
Eprm =R | 2pdt  E=4740 | i(r)? dt =8.22x107 Joules
=0
The values agree to within 96% We still don’t know where 40% of the

220nF polymer cap agrees to within 99% energy went from the effective low-f

charge and high-f discharge .




Combining frequency and time domain data @&
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accounts for <15%
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Sr shifts T, below room temperature dufE
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= Dielectric relaxation should be below 0°C for high frequency
and fast pulse applications 18



Srshifts T, . by 1.77 K/mol.% Sr
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Composition also affects voltage tuning
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When the system requirements are well defined, we can develop capacitors from
the compositional level to the component level to meet device requirements
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200 nF MLCCs were successfully
fabricated from BZT-80BT

129 9.0 &Y
= Core-shell structures were identified as T RS
possible contributors to reduced field tuning ] ~

= Capacitance values calculated from pulse
discharge data reveals that the dielectric ol
relaxation is observable in the time domain
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= We are working to reduce the temperature of
the dielectric relaxation through solid solution .,
formation e 21
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Questions?

Harlan Brown-Shaklee
hjbrown@sandia.gov
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Dominant frequencies from a current pulse ) s
can be extracted using a Fourier transform

Current Waveform from  Fourier Transfo;m 1.4 MH
Underdamped RLC Circuit ' ‘
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Dominant frequency (~1.4MHz) of the current pulse measured with a CVR agrees
well with that calculated from w,=2mrf




