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Goal is to understand properties of a wide variety of materials ) s,
under pressure

Laboratories

Cerium Phase diagram

= Van der Waals interactions 1600
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Techniques to probe materials at extreme conditions ) faor
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The Sandia Z Machine ) =,

Laboratories
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EOS poses a stringent challenge for calculations ) e

LDA energy with QHA vs volume for Be

14

= (Calculate Be HCP-> BCC b
phase transition pressure 10|
with LDA+QHA

= What is sensitivity of
transition? 2 |
= Make constant shift of E,,p(V)

Energy (eV)
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= Tansition pressure changes 8 o e
from 350 Gpa to 525 Gpa

with a 1 kcal/mol shift

= Zero point energies were an
order of magnitude larger

= Chemical Accuracy is not
good enough! e S S Fa—
Error in BCC Energy (shift in meV)

HCP -> BCC Transition Pressure (Megabar)




DMC may allow required accuracy @&

JCASINO DMC (ADF QZ4P, dt —0) [this work]

o~ A AL A AT
Y TN NAMN e

N\
=
CASINO DMC (old geometry, GTO 6311, dt=0.002) [this world)
20} : ]
15} .
10t .
E A NPT A | AA JAYV.Y:
5k VARV B \"1/ a1 \E Y v
| I PN PR MR N AT M P TR MR TR PR

_JGrossman, DMC, pseudopotentials

15_ T T T T T T T T Iil T T T T T T T T T T T T T T T T T T T T T T
10t

F 5¢

h% 0./'\_ =

4-5

= S

J Feller et al., CC

Binding energies in kcal/mol

from Nemec et al, JCP. 132, 034111 (2010)




QMCPACK — Massively Parallel QMC @

= Quantum Monte Carlo code designed for massive parallelism
= Developed by J. Kim et al at Oak Ridge National Laboratory

= Hybrid MPI / OpenMP parallelism
= Shared Memory on Nodes, Distributed between

= Can efficiently scale to more than 1,000,000 CPU cores
= CUDA port to GPUs with 15X speedup
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DMC is not as mature as DFT ) i,

= Calculations of condensed phases involve a variety of approximations
= Most approximations may be made arbitrarily small, but approaches to this are not
standardized

= Finite size effects
* One body effects -> DFT comparison or twist averaging
= Two body effects -> Extrapolation, KZK functional or MPC / Chiesa combination

= Fixed node errors
= Slater jastrow wavefunction, self healing, backflow, geminals, pfaffians, multideterminants

= Pseudopotentials
= Only valence electrons simulated because of computational cost
= |n which approximation should core and valence be separated
= Correction via all electron calculation or comparison with all electron DFT




Approximation methods can greatly affect results

= Case study on Si
= Total energies of diamond and beta-Sn phases calculated with DMC / LRDMC
= Quasiharmonic phonon corrections included
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Method Raw (GPa)  Corrected (GPa) (T = 300 K)
LDA 7.21 6.34

PBE 9.87 8.99

VMC 15.48 £ 0.06 133+ 1.0
LRDMC 16.65 £ 0.15 145+ 1.0

DMC (Ref. 18) 19.0 £ 0.5 165+ 0.5

DMC (Ref. 13) 165+10 140+1.0
AFQMC (Ref. 20) 15.1+03 126 £0.3

Expt. 10.0 — 125 10.0 — 12.5

Sorella et al. PRB 83, 075119
(2011)




Test approximations on a suite of solids ¥ &:=..

Binding is different
= Far less effect from degenerate energy levels at highest energy states
= More effect from relative energy levels

Test should compare to easily measured experimental data

= high pressure calculations to derive properties of ambient phase

Previous calculations have required 1 year of time on NSF
machines for a single solid

Calculations performed on Cielo
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Pseudopotential Details ) .

= LDA pseudopotentials constructed with OPIUM

= Compared to either LAPW calculations with elk or LMTO calculations with
RSPT (Mattsson et al. JCP 128, 084714 (2008))

= Bulk modulus and equilibrium volume nearly same to minimize
corrections such as applied i in Maezgno et al. PRB 82, 184108 (2010)
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Sandia

Convergence of technical parameter@) .

= Tests performed for moderate size supercell at 2 volumes
= Time step, b-spline spacing and twist averaging converged to within meV

* Finite size convergence achieved when change to larger supercell

produced same energy shift in ambient and high pressure calculations

kinetic energy (Ha) LocEn Variance total energy (Ha)
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Sandia

Convergence of technical parameter@) .

= Tests performed for moderate size supercell at 2 volumes
= Time step, b-spline spacing and twist averaging converged to within meV

* Finite size convergence achieved when change to larger supercell
produced same energy shiefr;teirra yam!]:))ient and high pressure calculations
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Sandia

Convergence of technical parameter@) .

= Tests performed for moderate size supercell at 2 volumes
= Time step, b-spline spacing and twist averaging converged to within meV

* Finite size convergence achieved when change to larger supercell
produced same energy shift in;ambignt and high pressure calculations
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First ever extensive benchmarks of Quantum m@)gs
Monte Carlo for condensed matter

= Fit Vinet form to E(V) and compare equilibrium volume (density) and bulk
modulus (compressibility) to experiment

= Materials span a factor of 10 in
DMC equilibrium volume
= N OB Y w &= & " Fourtypes of bonding are included
- = = = - == = |onic
= Covalent
= Metallic
= Van der Waals
Lattice Constants within ~0.9%
This provides a new baseline
= procedure for a QMC calculations
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Mean error: -0.38 +/- 0.15

Mean absolute error: 2.28 +/- 0.15

RMS error: -0.697 +/- 0.066%

Mean absolute relative error: 1.79 +/- 0.07%




First ever extensive benchmarks of Quantum ()i
Monte Carlo for condensed matter

= Fit Vinet form to E(V) and compare equilibrium volume (density) and bulk
modulus (compressibility) to experiment

DMC
- — = Bulk modulus spans over 3 orders
S S S of magnitude
S = This provides a new baseline

® 2' procedure for a QMC calculations
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Mean error: -0.07 +/- 0.42

E - ' ' - Mean absolute error: 3.53 +/- 0.42
RMS error: 0.62 +/- 0.44%
Mean absolute relative error: 4.49 +/- 0.44%



Compare to DFT functionals ) .

= Compare to various Percent Error
“good” DFT S = - = 8 8 S £ 8
o = I+ oW <« -
functionals i
= LDA =re - - .
= PBE @ | o= i
= AMO5 @ | i‘>< _
= HSEsol = L - | g
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functionals are
improving to wide
applicability




Compare to DFT functionals ) .
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Si Phase transition revisited: fh 'ﬁaﬁdt'
Utilizing methodology from benchmark fares little better

= Use DFT based pseudopotential

= Extensive twist averaging for
Fermi surface
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= Chiesa correction for kinetic
energy and MPC for potential

14

9l

= Equilibrium properties are worse
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Study simpler system to isolate errors: )
Be HCP -> BCC phase transition

= Solid Be used in ICF

= High strength, low Z material, Low x-ray
absorption

= HCP at ambient temperature and pressure

= Phase transition to BCC at high pressure

= Simple but demanding computationally
6000

liquid
bcc

hcp

200 300 400 300
P (GPa)
Benedict et al. PRB 79, 064106 (2009)

1 \
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Study simpler system to isolate errors: ) i
Be HCP -> BCC phase transition
Solid Be used in ICF r X
= High strength, low Z material, Low x-ray
absorption

HCP at ambient temperature and pressure
Phase transition to BCC at high pressure

Simple but demanding computationally

Liquid ~ wwf Liquid o
e g - - ""'ﬁpﬁ—_
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~ 00
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Rober and Sollier. J. Phys. IV France 134, 257 (2006)




Study simpler system to isolate errors: )
Be HCP -> BCC phase transition

= Equation of state is fit using Vinet form
= More crucial because values have statistical errors

= Casula t-move formalism employed for

pseudopotentials
= Phase transition occurs at > 635 GPa HCP Equilibrium Parameters
= Significantly higher than DFT result ~ 390 GPa QMC Exp
o QMC energy vs volume for Be C/a 1 569 +/_ 0004 1 568
1|:| T T T T T T HéP '_:_
_—— Vo (angstrom’3)  7.746 +/-0.078  8.117
8% 1400 .
’t‘x 1200 Bulk Modulus (GPa) 124 +/- 2 116.8
\,‘ 1000

GPa

Energy (eV)

Vaolume [aﬂgstrcm3I Be)



Perform all electron calculation to ) i
eliminate pseudopotential errors

Energy (eV)

= Utilize hard pseudopotential with 4
electrons in valence for calculation
of trial wavefunction

= Replace with 4/r for QMC

= All properties of HCP (ambient)
phase agree with experiment
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= Phase transition pressure shifts to
418 GPa, more in line with that
inferred by shock experiments
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HCP E:quilibrium Parameters

QMC All Electron QMC Exp
cla 1.569 +/- 0.004 1.569 +/- 0.004 1.568
V, (angstrom”3) 7.746 +/- 0.078 8.123 +/- 0.006 8.117
—— BUIK Modulus (GPa) 124 +/- 2 115.7 +/- 1.5 116.8



Accuracy of all electron methodology holds
for another light nuclei phase transition

Sandia
m National

Laboratories

= Calculate LiH transition from B1 to B2 phase

= Ambient (B1) phase in excellent B1 Equilibrium Parameters

agreement with experiment

QMC Exp
= Phase transition pressure 337 GPa :
. Lattice Constant 4.074 +/- 0.002 408
= DFT (LDA) calculations 308 Gpa (angstrom)
= Complements DAC experiments B“'k(c'\;';:)“'”s 32.2+/-0.4 33.1 +/-0.3
which top out near 250 GPa
B’ 3.64 +/-0.05  3.64 +/-0.05

1.0
—— Vinet EOS
ref[1], corrected for

T T T T T T
0 50 100 150 200 250
Pressure (GPa)

°
0.9+ new ruby scale in ref[18]
|\ d runi
i v run2
0.8 A run3
% < run4
o 0.7 LA X run5
= Q) X run 6 (low temperature)
> 5 A run 7 (not used in fit)
0.6 O run 8 (LiH+H2) —_—
C;:' 9
0.5 O,
e
0.4 e

Lazicki et al. PRB, 85, 054103 (2012)
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Minimizing the pseudopotential approximation will & e
have the largest impact on DMC calculations of solids

= Phase transitions under pressure provide sensitive test of DMC

= Calculations using high quality DFT pseudopotentials have mediocre
accuracy

= All electron calculations of Be and LiH give extremely accurate properties
for equilibrium phases

= All electron phase transition pressures agree with available experiments
and are comparable to best DFT based answers

= All electron calculations are not a feasible proposition for many
applications

= Reducing the pseudopotential approximation should be the highest
priority for the calculation of solids with DMC




Moving to higher temperatures T .

= High pressure low temperature conditions are quite rare in
the universe

= Zero temperature behavior sets the foundation, but does not
constrain all of an equation of state

= Melt boundaries, isentropes, adiabats, critical points etc are
all of interest experimentally

= No general path for high temperature properties from DMC

= Combine with another method
" Free energy decomposition: F(V,T) = F (V) + F,(V,T) + F(V,T)
= Thermodynamic integration




Melt boundaries are particularly challenging
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Laboratories

= Target recent discrepancies in melt curves under pressure

= Early DAC experiments may have encountered a variety of difficulties
= Where available, shock determinations of melting often suggest a much steeper melt curve
" Increased reactivity at high temperature and pressure can lead to chemical reactions that

lower melt curve

= Fast recrystallization caused by different absorption profiles of the solid and liquid can also

16000
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12000

<2 10000

8000

6000
4000

2000

lead to lowered determination of melting profile

Ta melt curve

Ref. 1, Shock Data
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| —— Ref. 7

hex-m, Ref. 8
Dewaele et al.
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Case Study: xenon melt transition ) e,

900
» Closed shell insulator at ambient conditions .
700
= Under static compression e
= FCC-> HCP Phase transition S w0
= |sostructural insulator to metal transition % 400
. . 0 300
=  Hugoniot well characterized ol
= Liguid phase may exhibit anomalous behavior 00}
= Very narrow temperature range at ambient pressure e T ETEEEETRETRRT
; Density (g/cm®)
= Potentially flat melt curve at moderate pressures
oo _ Root et al. PRL 105, 085501 (2010)
5000 | i
Upper
g 4000 F ' i diamond
o ) .
Eoonnp et - N
E ‘o/_// DAC, Boehler et al. 2001 e Ve 7 P Pyr.omr
2000 './‘/ Saiiggr% Er?essﬁignﬂ:gggg : 1 V
‘ Belonoshko et al. 2006 #
1000 | v . dlamond
N

Pressure (GPa) Klug, Physics. 3, 52 (2010)



Pseudopotential poses a particular challenge for  (dn) &
Laboratories
accurate DMC calculations

= Validated norm conserving Xe pseudopotentials not widely available

= D-states well removed from valence, but d-projector is crucial
" Increasing d-hybridization suggested as cause of flat melt line
= Ross etal. PRL 95. 257801 (2005)

FCC energies of LDA pseudopotentials for Xe

vasp PAW

L ]
. elk LAPW 4
6 pseudopotential - d in valence - ]
: pseudapaotential - d in core %
5L W pseudopotential with d projector -d in core - i
i\ l"'., T T T ]
E 41 ]
=
<
~— 3 n = -
=
~0.5eV/Xe © i
difference at < | . .
70GPa 1 4.5 5 55
Lallice CGonslant (Angstrom)
U L
4 4.5 a 5.5 6 6.5 7

Lattice Constant (Angstrom)
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Fixed node approximation and DFT Functional ) fouea,

= FCC equation of state
= LDA - no long range correlation, but self interaction in low density regions
= AMO5 - subsystem based functional, van der Waals is completely absent

FCC energies of Xe using different methods

1.5':' T T T T T T T

1.40 | |
i DFT AM05 |

1.20 * DFT LDA

1.00 F -

0.BEO

0.60

Energy (eV)
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_n.En L 1 L L L L L
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Sandia
Fixed node approximation and DFT Functional ) fouea,

= FCC equation of state
= LDA - no long range correlation, but self interaction in low density regions
= AMO5 - subsystem based functional, van der Waals is completely absent
= DMC with nodes and pseudopotentials taken from above calculations
= Very small dependence on DFT trial wavefunction

FCC energies of Xe using diffcrent methods
1.60 : : .

1.40 | -gmc with AMO
4 DMC with

1.20 3

1.00 } .

0.80 ¢ -

0.60

Energy (eV)

0.40

020 |

0.00 |

_DIED L L 1 L L L L
9.00 10.00 11.00 1200 13.00 14.00 15.00 16.00 17.00

Lattice constant (bohr)



Difficult to determine free energy directly: ) s
Determine relative free energy of phases within QMD

= Place solid and liguid in contact with each other
= Run at different temperatures or starting energies and watch phase boundary

= Relative heat capacities and enthalpy of melting determine range of phase
coexistence

« Melt at 5800 K
* Freeze at 5400 K
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Thermodynamic integration to map to DMC free energies L

= Calculate the change in free energy between different ensembles
= There are two approaches, a one shot formula or a perturbation series

0 n—1
AF =F,-F, ar =3P
=—k,TInZ,+k,TInZ, "

=—kBTan:e_BUSZ/Z:e_'ws1
_ —B(UE—Ui)S -BU, -BU;
B

N

n

=k, Tln(e ™) K, =(AUY), =3(AU) (AU?), +2(AU),

= Comparison of the two approaches provides a rough idea of the rate of
convergence of the series

= Need to calculate energy differences from snapshots

34
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Trial wavefunctions used for QMC

= Use a real space representation of the wavefunction
= Plane waves require evaluation of each basis
element for every move
= 3D b-splines require only 64 evaluations
at each point
» Very large amounts of memory required :
96 GB / wavefunction

o

= Hybrid Representation
= Use coarse b-spline mesh in real space )
= Radial spline near atoms EmEE —i
= Wavefunctions reduced to 24 GB |
= Conversion is expensive for large systems

(a)Uniform B-spline (b)Mixed basis
= GPU port of wavefunction conversions
= Massive parallelism available
= Conversion Time reduced from 10 days on 16
CPU cores to 6 hours on 4 GPUs



Thermodynamic integration in practice

Jaqunu joysdeus

energy / Xe (eV)

f

Jaqunu joysdeus

energy / Xe (eV)
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10 snapshots taken from a solid QMD
calculations with LDA functional

Free energy shift from exponential:
« -0.05947 +/- 0.00085 eV / Xe
Terms from the perturbation series
» 1storder: -0.05818 +/- 0.00067 eV/Xe
« 2ndorder: -0.00158 +/- 0.00023 eV/Xe
« 3" order: -0.00030 +/- 0.00012 eV/Xe
Fast convergence leads to confidence in
closeness of ensembles
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Two approaches to determine the shift of the melt line

= Determine the change in Gibbs free energy directly
AGZS

Is

AT, ~ AG =~ AF —VAp® /2K,

= Approach from Sola and Alfe PRL 130, 078501 (2009)
= Some uncertainties in how to evaluate S}, and Ap

= Alternative is to work with Helmholtz free energy
= Calculate isotherm with DFT in each phas

F=-PdV—-8dT —> dF =—| PdV +C

= Use pressure from two phase calculations to set relative shift between
phases within DFT
= Thermodynamic integration at multiple volumes allows for changes in

slope of free energy
37
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QMC correction on DFT melt line

Relative Helmholtz Free Energies from QMC

 No evidence for low melt line found
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Validation of method: Melting of aluminum

= Shock and DAC melt exhibit a consistent trend
= DFT (2 phase approximation) accurately reproduces melt curve
= Thermodynamic integration from DFT to QMC gives a shift of only 18 K |
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Conclusions )

= Diffusion Monte Carlo can accurately treat Xe under pressure
= Pseudopotential Approximation is small
® Fixed node approximation is likely a small error

= Accurate treatment of d-hybridization does not cause melt curve to flatten
= Relative energies from DFT within LDA appear to be accurate near 1 Mbar

= Errors in total energies from quantum MD calculations will increase
melting temperature

= Flat melting curve from DAC should be revisited




