

U.S. Department of Energy Office of Nuclear Energy

Supercritical CO₂ Brayton Cycle Energy Conversion Program*

Gary E. Rochau, Sandia National Laboratories

The US Department of Energy, Office of Nuclear Energy, has continued the development of advanced energy conversion technology focusing on the Supercritical Carbon Dioxide Brayton Cycle (S-CO₂). Formerly under the Generation IV Nuclear Energy Program, the S-CO₂ program is now supported by the Nuclear Reactor Technologies Office under the Advanced Reactor Concepts program. Brayton cycles are favored candidates for these higher temperature applications, and the supercritical CO₂ Brayton cycle continues to be well suited for application to advanced reactor concepts. This application has the potential for lower costs and high efficiency in addition to resolving some of the safety issues associated with steam Rankine cycles on conventional nuclear reactors. To support the development of this cycle, the DOE program is also conducting S-CO₂ heat transfer experiments in compact heat exchangers and materials compatibility testing for the higher temperature applications. The next step in the DOE plan is to demonstrate the S-CO₂ cycle at a sufficiently large scale to confirm system performance and control strategies for a commercially relevant sized system. The S-CO₂ cycle is now being considered for application to solar, advanced fossil, and other energy applications. DOE NE will seek broader participation with other DOE offices, industry, or international partners to identify the best approach for next level of scaling and demonstration.

* Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.