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ABSTRACT

This work will present the utilization of the massively multi-threaded environment of graphics processors (GPUs)
to improve the computation time needed to reconstruct large computed tomography (CT) datasets and the aris-
ing challenges for system implementation. Intelligent algorithm design for massively multi-threaded graphics
processors differs greatly from traditional CPU algorithm design. Although a brute force port of a CPU algo-
rithm to a GPU kernel may yield non-trivial performance gains, further measurable gains could be achieved by
designing the algorithm with consideration given to the computing architecture. Previous work has shown that
CT reconstruction on GPUs becomes an irregular problem for large datasets (10GB-4TB),1 thus memory band-
width at the host and device levels becomes a significant bottleneck for industrial CT applications. We present
a set of GPU reconstruction kernels that utilize various GPU-specific optimizations and measure performance
impact.

1. INTRODUCTION

Computed Tomography (CT) is an indirect 3D imaging technique in which an approximation of the 3D object is
represented in a voxelized space and created from a set of 2D projection images (typically x-ray images).2, 3 The
computational complexity required for volumetric reconstruction varies by the type of algorithm, but frequently
ranges between o(n4) to o(n5) for single-pass and iterative algorithms.4, 5 There have been efforts in which the
complexity has been reduced to o(n3log(n))6, 7 however; on a CPU-based system, this computation would still
require an unreasonable amount of time to complete.

Graphics Processing Unit (GPU) technology has been applied successfully to various medical scale CT algo-
rithms5, 8, 9 (1283 to 10243 voxels, 300 to 1000 projections). Yet, even with these improvements, the algorithm
performance does not scale well when increasing the number of voxels or projections. Furthermore, adding more
GPUs to a system does not mean scalable performance due to various hardware limitations. Previous work1

has shown that large-scale CT is an irregular problem and hence has an unpredictable memory access pattern
resulting in poor cache hit-rate among all GPU cache levels and types. This work will present a kernel that
gradually evolves to exploit a graphics-specific architecture and measure incremental performance gains with
respect to two large datasets.

2. CPU-BASED RECONSTRUCTION AND PORTING TO GPUS

The CUDA programming environment, as well as other GPU-programming languages (OpenCL, DirectCompute,
etc.), have made GPGPU technology readily accessible to a large portion of the scientific computing community.
Frequently, an honest first attempt to implement an algorithm on a GPU is to perform a brute force port of a
CPU-based approach to a GPU-based implementation. It has been the experience of the authors that a blind
CPU-to-GPU port of a properly parallelized algorithm will frequently yield a speedup in computation by a factor
between 2× and 6×. This type of performance gain is typically sufficient for many small-scale applications and
thus the added effort to exploit the GPU-specific hardware does not benefit the user significantly.
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A CPU-based reconstruction will typically loop over the projection data and iteratively update a single voxel
on a given image plane. This process is repeated for every voxel on every image plane. For a multi-core CPU
with n threads, the process is similar with the exception that n voxels are simultaneously updated. Currently,
a typical system has an n that ranges from 2 to 32.

A simple GPU-ported kernel would allocate a computation thread for every voxel on an image plane and
update each voxel in parallel with the given x-ray projection data iteratively. A CPU-based routine would loop
over the image planes with a nested loop within iterating over projection data. Thus, for a reconstruction with
N image planes and M projections, the kernel would be launched MN times.

Algorithm 1 CPU Kernel Launcher

Input: Projection Images (P1, P2, . . . , PM ), Scan Geometry (G), Voxels Per Image Plane (n)
Output: Voxelized Volume Reconstruction I1, I2, . . . , IN
for Every image plane Ii do

Allocate memory on GPU Device for Ii
Initialize all values in GPU allocated array Ii to 0
for Every Projection Image Pj do

Allocate memory on GPU Device for Pj

Upload Pj to GPU Device
Launch Ported Kernel with n GPU threads (see algorithm 2)
Free Pj on GPU Device

end for

Download Ii from GPU Device
Free Ii on GPU Device

end for

Algorithm 2 Ported Kernel

Input: Ii,Pj ,G
Output: Ii updated with data from Pj

Get thread id and designated voxel in Ii
if Voxel in Region of Interest then
Calculate back-projection path position, ~b, within Pj

Calculate bilinear interpolation weights, ~w
Calculate 2D interpolation on Pj based on ~w and ~b

Update designated voxel in Ii
end if

Algorithms 1 and 2 are a possible implementation of a ported version of reconstruction. The largest perfor-
mance gain is realized from performing the bilinear interpolation for every voxel in parallel. The most undesirable
traits of the implementation is the large amount of data uploads, downloads, and kernel launches required. Each
of these operations has significant overhead that sacrifices performance.10

3. EXPLOITING MASSIVE THREAD ENVIRONMENTS PROPERLY

Algorithms 1 and 2 are en example of a brute force implementation that requires minimal effort in porting over
to a graphics processor. The next reasonable step would be to transplant the nested for-loop in algorithm 1 into
the GPU kernel. Transferring the for-loops over to the kernel is desirable as this would reduce the number of
kernel launches required to complete the reconstruction task as well as allowing the GPU to execute for longer
periods of time which would improve the voxel processing throughput.

To implement the modification, one must still consider the almost arbitrary scan configurations and acqui-
sition hardware. Thus, it is very likely that the entire projection dataset as well all imaging planes could not
entirely reside on the device memory simultaneously. Therefore, a projection data and subset of image planes



will instead be used where the projection block contains a subset of the relevant projection images and the image
plane block will contain the image planes that will be processed simultaneously. For large-scale reconstructions,
this implementation will iterate over all image plane blocks and projection data blocks.

Algorithm 3 CPU Kernel Launcher (Block Scheme)

Input: Projection Images (P1, P2, . . . , PM ), Scan Geometry (G), Voxels Per Image Plane (n)
Output: Voxelized Volume Reconstruction I1, I2, . . . , IN
Determine blocking of projection data (BP

1 , BP
2 , . . . , B

P
M ′)

Determine blocking of image blocks (BI
1 , B

I
2 , . . . , B

I
N ′)

for Every image block BI
i do

Allocate memory on GPU Device for BI
i

Initialize all values in GPU allocated array BI
i to 0

for Every Projection image block BP
j do

Allocate memory on GPU Device for BP
j

Upload BP
j to GPU Device

Launch Blocked Kernel with n GPU threads (see algorithm 4)
Free BP

j on GPU Device
end for

Download BI
i from GPU Device

Free BI
i on GPU Device

end for

Algorithm 4 Blocked Kernel

Input: BI
i ,B

P
j ,G

Output: BI
i updated with data from BP

j

Get thread id and designated voxel in each image plane in BI
i

if Voxels in Region of Interest then
for Each Image Plane Ih in BI

i do

for Each Projection image Pk in BP
j do

Calculate back-projection path position, ~b, within Pk

Calculate bilinear interpolation weights, ~w
Calculate 2D interpolation on Pk based on ~w and ~b

Update designated voxel in Ih
end for

end for

end if

Algorithms 3 and 4 implement the blocking scheme discussed above, note that the CPU-based kernel launcher
is essentially unchanged except for two-partitioning tasks and the nested for-loops now iterate over blocks of
image planes (sub-volumes) and projection image blocks. Any blocking scheme can be used to accommodate
any data format. The kernel presented in algorithm 4 will now take in blocked data, each of the n GPU threads
launched will be assigned a subset of voxels to update with the projection data in BP

j . Note that one could also
launch more GPU threads on the GPU so that the outer for-loop in the kernel can be completely eliminated.
We contend that for large-scale data, the performance difference is likely negligible as the management of the
increased number of GPU-threads becomes burdensome and GPU memory bus would be over-saturated.

4. GPU HARDWARE INTERPOLATION

As mentioned earlier, the bilinear interpolation in the reconstruction algorithm is computationally expensive.
One of the features of GPUs that differs from CPUs is hardware-based interpolation capabilities. The potential
drawback is that for current technology, hardware-based interpolation is done in 24-bit precision11 which differs



from the 32- or 64-bit precision that is frequently used. Fortunately, many imaging and inspection applications
only utilize 16-bit precision. Thus, as long as a numerically stable approach is implemented, then precision will
remain adequate.

To utilize the interpolation hardware, the projection data must be uploaded to the GPU as a read-only
texture array. For current state-of-the-art, utilizing texture arrays allows for the kernel to utilize fast texture
cache on the GPU for a potential boost in performance. To accommodate multiple projection images, one could
utilize either multiple textures, a large texture with tiled projection images, or layered textures,10, 11 depending
on the particular device being utilized.

Algorithm 5 CPU Kernel Launcher (HW Interpolation Scheme)

Input: Projection Images (P1, P2, . . . , PM ), Scan Geometry (G), Voxels Per Image Plane (n)
Output: Voxelized Volume Reconstruction I1, I2, . . . , IN
Determine blocking of projection data (BP

1 , BP
2 , . . . , B

P
M ′)

Determine blocking of image blocks (BI
1 , B

I
2 , . . . , B

I
N ′)

Allocate texture memory on GPU Device for largest BP
j ∈

{

BP
1 , B

P
2 , . . . , BP

M ′

}

for Every image block BI
i do

Allocate memory on GPU Device for BI
i

Initialize all values in GPU allocated array BI
i to 0

for Every Projection image block BP
j do

Upload BP
j as a texture to GPU Device

Launch Blocked Kernel with n GPU threads (see algorithm 6)
Free texture BP

j on GPU Device
end for

Download BI
i from GPU Device

Free BI
i on GPU Device

end for

Free Texture memory allocated on Device

Algorithm 6 HW Interpolation Kernel

Input: BI
i ,G

Output: BI
i updated with data from texture BP

j

Get thread id and designated voxel in each image plane in BI
i

if Voxels in Region of Interest then
for Each Image Plane Ih in BI

i do

for Each Projection image Pk in BP
j do

Calculate back-projection path position, ~b, within Pk

Perform texture fetch from Pk at position ~b

Update designated voxel in Ih
end for

end for

end if

Algorithms 5 and 6 implement algorithms 4 and 5 except they exploit the hardware interpolation capabilities
of the GPU. Note that in algorithm 5, the projection data block is now allocated outside of the nested for-loop.
The texture array is updated and reused during reconstruction. This allows for a reduced number of memory
allocation and deallocations. Algorithm 6 has been simplified by eliminating the calculations of the weights ~w

and the 32- or 64-bit interpolation operation and replacing it with a single texture fetch.



5. REGISTER AND GPU-CACHE OPTIMIZATION

Our final evolution of the reconstruction task is the implementation presented in Jimenez et. al.1 This implemen-
tation involves improving algorithmic execution by minimizing wasted clock cycles on the device. To accomplish
this, we exploit the following:

• GPU Memory Utilization

• Register Optimization

• Constant Memory

• Device Global Memory Fetches

Each will be addressed separately.

5.1 GPU Memory Utilization

Instead of uploading entire projection images, only relevant projection image data from a given projection block
is uploaded. Determining relevant data is a trivial calculation and should have negligible effect on performance.
The elimination of irrelevant projection data will improve the texture cache hit-rates as well as improve the
utilization of device resources.

5.2 Register Optimization

When calculating ~b, the order in which the calculations are executed as well as how many variables are utilized
could potentially affect performance due to read-after-write dependencies and register pressure. Read-after-write
dependencies have a latency of approximately 24 clock cycles for Nvidia GPUs.10 Additionally, we implement a
kernel such that register pressure is minimized as much as possible. This is achieved implicitly by the combination
of optimizations in the list above.

5.3 Constant Memory

Until now, no mention of the parameters contained in ~G have been made. The vector ~G contains the scan geom-
etry information (detector properties, source-to-detector distance, source-to-object distance, etc.). Throughout

the reconstruction, ~G is fixed and is used in the calculation of ~b. Therefore, we propose moving ~G into constant
memory, which is a very fast user configurable cache that is disjoint from the L1- and L2-cache; thus reducing
the traffic that goes through both cache levels.

5.4 Device Global Memory Fetches

When updating voxel information, memory bandwidth can be preserved by only updating voxel information when
necessary. During iteration through projection data, a register will be updated, after these iterations complete,
one voxel update is performed. The improvements are two-fold, not only is device bandwidth preserved for
texture fetches, but also allows the L2-cache to more effectively feed the texture-cache.

5.5 Final Evolution

Algorithms 7 and 8 show an optimized implementation of the reconstruction task. Note that the kernel now
only require a single input due to the texture implementation of the projection data and the constant memory
assignment of the scan geometry parameters. This implementation will reduce the number of wasted clock cycles
by providing a memory access scheme that keeps each GPU multiprocessor occupied with work. The approach
to avoid read-after-write dependencies will be highly variable in its implementation due to the different schemes
for each particular reconstruction algorithm.



Algorithm 7 Final CPU Kernel Launcher Optimized

Input: Projection Images (P1, P2, . . . , PM ), Scan Geometry (~G), Voxels Per Image Plane (n)
Output: Voxelized Volume Reconstruction I1, I2, . . . , IN
Determine blocking of projection data (BP

1 , BP
2 , . . . , B

P
M ′)

Determine blocking of image blocks (BI
1 , B

I
2 , . . . , B

I
N ′)

Upload ~G to GPU Constant Memory
for Every image block BI

i do

Allocate memory on GPU Device for BI
i

Initialize all values in GPU allocated array BI
i to 0

Allocate texture memory on GPU Device for largest relevant projection block needed
for Every Projection image block BP

j do

Determine Relevant Projection Data in BP
j , B

′P
j

Upload B′P
j as a texture to GPU Device

Launch Kernel with n GPU threads (see algorithm 8)
end for

Download BI
i from GPU Device

Free BI
i on GPU Device

Free texture on GPU Device
end for

Free constant memory

Algorithm 8 Final Kernel Optimized

Input: BI
i

Output: BI
i updated with data from texture BP

j

Get thread id and designated voxel in each image plane in BI
i

if Voxels in Region of Interest then
for Each Image Plane Ih in BI

i do

Set register to zero
for Each Projection image Pk in BP

j do

Calculate back-projection path position, ~b, within Pk while minimizing read-after-write dependencies
Perform texture fetch from Pk at position ~b

Update register with texture fetch data
end for

Update designated voxel in Ih with register value
end for

end if

6. EVALUATION

All kernel implementations were tested on a high-end single node workstation consisting of a Supermicro X9DRG-
QF Motherboard, 512 GB DDR3 System memory, dual Intel Xeon E5-2687W octo-core processors clocked at 3.1
GHz with hyperthreading for a total of 32 CPU threads, and 2 Nvidia/Next-I/O Tesla S2090 Devices connected
via 4 PCI-E 2.0 16x host interface cards. Each S2090 device consists of 4 Nvidia Tesla M2090 GPUs with 6GB
of GDDR5 device memory and 16 multiprocessors each for a total of 2048 CUDA cores per S2090. For this work,
only 1 M2090 GPU will be used to minimize performance influence from the host.

Each kernel’s performance will be measured against two datasets; the first is a 40003 voxel volume recon-
struction from 1800 16 mega-pixel (4000×4000) images, the second is a trillion voxel reconstruction from 10, 000
100 mega-pixel (10, 000× 10, 000) images. All GPU kernels were written in CUDA (Version 5.0), host code was
written in C++ using Microsoft Visual Studio 2008. Performance metrics consist of minimum, maximum, and
average kernel runtime with respect to image plane position, as well as kernel runtime variance with respect to
image plane position. As this work solely focuses on individual kernel runtime performance, other operations such



as data transfers between host and device, and data transfers from host to storage media will not be measured.

7. RESULTS

Figure 1 shows the average, minimum, and maximum kernel runtimes for the 40003 for each implementation of
the kernels. As expected, each evolutionary step of the kernel yields an incremental performance increase. Note
that across all implementations, kernel runtime increases among the central image planes of the volume, this is
due to more projection data being processed per kernel launch and is expected. In order to allow comparisons to
the ported kernel implementation, all performance times were normalized with respect to the projection blocks
used for the other three kernels. Figure 2 contains the variances of the kernel runtimes for each kernel. Notice
that the fully optimized kernel (algorithm 8) is the only kernel with significantly lower variance, this implies
that not only is algorithm 8 fast (figure 1), but also behaves more consistently across the entire reconstruction
volume. Figure 3 illustrates the incremental performance increase of the fully optimized version compared to all
other implementations. We see that the overall performance improvement compared to the first implementation
was almost a factor of 3.

Figure 4 displays the kernel runtimes for the center 100 image planes for the trillion voxel reconstruction.
Runtimes are longer due to the increased computational expense. The results are still consistent with those
observed in figure 1. The variance behavior of the trillion voxel dataset (shown in figure 5) is somewhat similar to
that displayed for the 40003 dataset in that the fully optimized version exhibits the most consistent performance.
Finally, figure 6 shows a slightly better performance improvement for the fully optimized kernel compared to the
other kernels. This is due to the increased computational complexity and opportunity for parallelization. Also,
the trillion voxel reconstruction will stress the limits of the hardware thus making discrepancies in performance
more prevalent.

8. CONCLUSION

We have shown that GPUs can achieve a nontrivial increase in performance by properly utilizing GPU threads,
specialized GPU hardware, and exploiting the unique cache structure to the advantage of the algorithm. This
work has the potential to impact GPU applications in Green Computing, smart algorithm design, and high-
performance computing. Many applications are not realizing the full effect of GPGPU technology, as this
work is an example of the relatively minimal effort needed to redesign an algorithm and achieve significant
performance gains. Many problems are arising where smart algorithm design will have a significant impact on
power efficiency, performance, and computational time. This is especially true for new and emerging non-CPU
computing architectures.
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Figure 1. Average kernel runtimes with respect to image plane index for the 40003 voxel volume. Error bars represent the
minimum and maximum runtimes
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Figure 2. Average kernel runtimes variance with respect to image plane index for the 40003 voxel volume.
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Figure 3. Average kernel performance improvement with respect to image plane index for the 40003 voxel volume.
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Figure 4. Average kernel runtimes with respect to image plane index for the center image planes of a 100003 voxel volume.
Error bars represent the minimum and maximum runtimes
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Figure 5. Average kernel runtimes variance with respect to image plane index for the Center image planes of a 100003

voxel volume.
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Figure 6. Average kernel performance improvement with respect to image plane index for the center image planes of a
100003 voxel volume.
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